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Abstract

In this paper, we study optimal contract problems for online display advertisements with

pay-per-view pricing scheme. We first provide and analyze a single contract model, which is

shown to be equivalent to the newsvendor problem. We then consider a stochastic optimization

problem with two different advertisements and show that a contract to display both of them is

not optimal. However, we show that a contract to display of both advertisements may be optimal

when we consider the publisher’s regret. We consider a chance constraint for the publisher’s

regret and provide numerical experiments that illustrate the change of optimal strategy for

different probability levels.
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1 Introduction

Online advertising has already become a dominant ad-medium and is continuously gaining market

share. In the United States, with 2011 revenue of $31.74 billion, online advertising is now marking

increasing significance to marketers and consumers (Interactive Advertising Bureau, 2012a). Online

advertising in the US is expected to grow eight times faster than the overall market and is already

the second largest behind direct marketing with a $9.3 billion revenue in the third quarter of 2012

(Interactive Advertising Bureau, 2012b). According to Interactive Advertising Bureau (2012a),

search and display are the major formats of online advertising having 81.3% market share. Search

advertisement appears as a search result in a web page loaded in response to a user keyword(s) search

request. Display advertisement, on the other hand, is displayed in web pages that are requested

for different purposes. Rather than instantaneous response, display advertising, in general, focuses

in achieving memory. Even though both search and display format will exist, reports suggest
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that marketeers are becoming more interested in display advertising. Instead of making a keyword

search, more users are making online purchases in response to display advertising (eMarketer, 2004).

Such gain in market share is attributed to the use of vast potential for technological innovation and

creativity in providing display advertisement (Interactive Advertising Bureau, 2010). From 2009

to 2010, the market share for display increased for 34% to 36% resulting about 5% relative gain

while the market for search remains the same (Interactive Advertising Bureau, 2010). As a result,

display will remain one of the leading modes of online advertising.

There are several pricing methods for online advertising services. Among those, pay-per-view

(PPV) and pay-per-click (PPC) are dominant in the market. In particular, PPV is popular in

display advertising and PPC is popular in search-based keyword advertising. For example, most

news websites like BBC use PPV schemes (BBC, 2013) for displaying ad banners, while search

engines like Google mainly use PPC schemes (Google, 2013) for search keywords. In this paper, we

focus on PPV schemes for display advertising.

There are two major sources of uncertainty in online advertising. First, the publisher does

not have any prior information about the number page-views i.e. how many times the publisher’s

page will be accessed by users. The second uncertainty is the number of clicks that is the total

number of click on the advertising. In this study, we consider the case that the publisher has

decided to host display advertisements only, which use pay-per-view pricing schemes, or the nature

of the problem suggests so. We will examine how to make contracts optimally while the number

of page-views is uncertain. With this end in view, we first consider that there is only one type of

PPV advertisement available and the publisher needs to determine contract size. Next, we consider

the case where there are two types of PPV advertisement available. Here, the publisher needs to

determine whether she should go for both advertisements (multiple contracts), and what should be

the optimal contract size. In particular, we study the optimal contract problem for single as well

as two PPV advertisements. We also make a similar study of optimal contract decision problem

when the publisher considers regret. In particular, we model the regret of the publisher with the

probability that the revenue is less than a certain number.

In a perfect competitive market, everyone generally accepts the market price so that it would

generate reasonable demand for one’s product. Similarly, the publisher is considered a price-taker

in this study. Therefore, she needs to determine the size of the contract that maximizes the revenue.

The optimal contract size should be the upper limit on the promise she should be making. In case

the demand at any pricing structure is less than the revenue-maximizing contract, the publisher

should make the contract equal to the demand and then try to decide on contract size of the next

best option. The effect of price on demand and optimizing the contract size as well as price can be

considered in an oligopoly. In online advertising, Ahmed and Kwon (2012) has studied this problem

where each publisher needs to optimize the price and contract size considering the effect of price

on demand. In this study, we assumed that the publisher, in a perfect competition, has unlimited

number of display advertising available. Therefore, there is no limit on the size of contract the

publisher can make.
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Regarding online advertising, there are limited studies reported in the literature of operations

research. Mangani (2004) addressed optimal decision making between cost-per-impression (CPM)

and cost-per-click (CPC) advertisements when the publishers are price-takers in the display ad-

vertisement market and later Fjell (2009) revisited the same problem. Both Mangani (2004) and

Fjell (2009) used the concept of elasticity to reach the conclusions. Kwon (2011) also studied a

capacity allocation problem between CPM and CPC advertisements with stochastic page-view and

click-through rate (CTR) and provided a stochastic optimization formulation. Kumar and Sethi

(2009) considered a dynamic pricing problem considering subscription and advertising. Roels and

Fridgeirsdottir (2009) studied a dynamic optimal customer selection and display scheduling prob-

lem considering only CPM contracts. Fjell (2010) first considered the problem for a publisher who

has the market power to set the price. However, to the knowledge of the authors, no study on

optimal contract problems considering risk/regret has been reported. Deane and Agarwal (2012)

study a display scheduling problem for display advertisements.

In this paper, we provide formulations for contract-sizing problems of online display ad pub-

lishers. The modeling framework is similar to Ahmed and Kwon (2012) for which price is the main

decision variable, while in this paper the size of contract is the primary decision. Our models also

inherit modeling components of Roels and Fridgeirsdottir (2009), in the sense that we consider

revenue opportunities from third-party risk-free ad networks and lost revenue opportunities from a

revenue optimization perspective. This paper further extends the previous modeling frameworks to

consider regrets of ad publishers. We find that a regret-averse ad publisher may consider two dif-

ferent contract types under PPV pricing schemes, while a neutral ad publisher would not consider

two different contract types.

Our study of regret-averse ad publishers is closely related to risk management in stochastic

inventory problems. The main difference is that supply is stochastic in our online advertising

problem, while demand is stochastic in most inventory problems. A good number of studies in

stochastic inventory management consider Value-at-Risk (VaR) as the measure of risk. Özler et al.

(2009) studied single, two and multi-product newsvendor problem incorporating VaR risk measure.

The exact formulation of the problem for single and two products case has been studied. They also

found the results for two products for the case of correlated demand. An approximation method

has been proposed to obtain the results for a multi-products case. Luciano et al. (2003) also

studied multi-period static inventory models with VaR being the risk measure. Zhou et al. (2008)

proposed an optimal-order model to consider multi-product inventory problem with Conditional

Value-at-Risk (CVaR) constraints. The model is simulated for the case of a newsvendor problem

and they find the solution bound is fully consistent with the decision maker’s intuition on return-

risk decision-making. The return-CVaR model is found to be more flexible than the classical model.

Yang et al. (2008) considered the risk of a newsvendor with limited capacity. Both the downside

risk measure and CVaR risk measure has been used here to optimize the model. Tapiero (2005) also

addressed stochastic inventory control problem with VaR approach, and showed that VaR approach

is justified by a disappointment criterion and provides its applications to inventory management.
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Agrawal and Seshadri (2000) studied how price and order quantity is impacted by uncertainty and

risk aversion. They found that risk-averse retailers distort their pricing decision in different ways

depending on the impact of price on the distribution of demand. Other examples for newsvendor

problems with risk considerations include the studies of Keren and Pliskin (2006), Van Mieghem

(2007), Choi and Ruszczynski (2008), Chen et al. (2009) and Wang and Webster (2009), Arcelus

et al. (2012), and Jörnsten et al. (2012).

In this work, display of an advertisement refers to loading a web-page containing the adver-

tisement in response to an online user request to load that page. When a page containing an

advertisement is displayed, we count that as a single impression. The number of page-views is a

random variable specifying how many times a publisher’s web-page containing an advertisement is

requested by visitors. The term capacity is used synonymously with the number of page-views, in

the perspective of web publishers for online advertising services. After the period of consideration is

over, the total number of display of an advertisement is termed as realized display of that advertise-

ment. For displaying only one advertisement, realized display and realized number of page-views

are same. If the publisher displays more than one advertisement, she needs to decide on allocation

and display rule. The publisher may display an advertisement first until the contracted number of

displays, and then start displaying another advertisement. We call this display rule a sequential

display rule. On the other hand, the publisher may display advertisements proportionally. That is,

the publisher displays advertisements in a mixed sequence of various advertisements. We call this

display rule a proportional display rule. In this study, we consider proportional display rule only.

The paper is organized as follows. Section 2 provides the optimal contract problem for a

single contract, and provides the equivalence of the optimal contract problem to the well-known

newsvendor problem. Then, Section 3 considers an optimal contract problem with two display

advertisements contracts and shows that making multiple contracts is not optimal. Section 4

formulates the problems for single and two PPV advertisements considering a chance constraint

for regret, which is followed by numerical examples in Section 5. The numerical results show that

making a contract to display both advertisements may be optimal when publisher is willing to take

a high chance of paying large penalty to generate more revenue. Finally, Section 6 concludes the

study.

2 Optimal Contract Sizing Problem: Single PPV Advertisement

In this section, we will develop a model for the optimal contract-sizing problem in online advertising.

In particular, we will consider a contract-sizing problem for displaying online advertisements with

pay-per-view (PPV) pricing scheme. Payment for PPV is dependent on cost-per-impression (CPM),

hence the revenue of a publisher depends on how many impressions she can be able to display.

When we consider a publisher’s optimal contract sizing problem, two types of advertisements

have PPV pricing scheme: one is advertisements by direct contract with the publisher, and the

other is so-called network advertisements (Roels and Fridgeirsdottir, 2009). The former type,
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henceforth termed as PPV advertisements, involves a contract that specifies how many times the

advertisements will be displayed within a certain time-frame. Network advertisements are sourced

through third parties or network agencies that make the contact with the advertisers. These network

advertisements are available for a flat rate lower price. The publisher generally tends to display

network advertisements to fulfill the unused capacity after displaying the PPV advertisements.

When the publisher makes a direct contract with an advertiser to display a PPV advertisement,

she promises a certain number of displays. For any reason, when the publisher cannot display

the contracted number, there is a penalty to the publisher for such under-delievery (The Digital

Marketing Glossary, 2012; Mostagir, 2010; Roels and Fridgeirsdottir, 2009; Bhalgat et al., 2012).

Such a penalty usually refers to the lost opportunity of the publisher by carrying over the unrealized

displays to the next time period. The penalty may also refer to direct refunds to the advertiser and

the loss of goodwill. However, for network advertisements, there is no such promise on the number

of displays.

As such a penalty is an important component of the operation of online advertising systems,

the number of page-views for the future time period is critical to the publisher. A page-view is

defined as a request to load a single page on a visitor’s screen. The total number of page-views is

definitely subject to uncertainty, i.e., the publisher can only have a forecast on this value. Similar

to stochastic inventory problems (Schweitzer and Cachon, 2000), we can make several assumptions

about the uncertainty of page-view. Let X (X ≥ 0) denote stochastic page-views during the time

period of interest and let µ be its mean. Let F (.) be the distribution function of page-views and

f(.) the density function. For simplicity, we assume F (.) is continuous, differentiable and strictly

increasing. Further, we assume that the publisher (decision maker) has an unbiased forecast of the

page-view distribution and knows F (.). In addition, we assume E[X] > 0, to avoid trivial cases.

In this section, we assume the publisher has only one web page to display and only one adver-

tisement can be displayed at a time. Also, the publisher will either make a single contract, or make

contracts with many advertisers who are homogeneous (same CPM and penalty). We provide a

formulation to consider the single contract problem or the aggregate contract problem. Our objec-

tive is to determine the optimal number of displays that should be promised to the advertiser(s).

Let v denote the aggregate number of displays to promise (decision variable). We use p and h

for the homogeneous CPM and penalty, respectively. Although CPM is the cost for a thousand

impressions, we use p for one impression, for simplicity. Then, with the page-view X, the revenue

of the publisher is:

R(v) = pv − hmax{(v −X), 0}+ qmax{(X − v), 0} (1)

where q is the unit revenue from network advertisements. If there are extra page-views after fulfilling

all contracts, the publisher uses those extra capacities for the network advertisement. When we

have the distribution information of X, the optimization problem

max
v

E[R(v)] (2)
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is a simple stochastic optimization problem. Its solution is easily obtained as:

v∗ = F−1

(
p− q
h− q

)
= F−1

(
p

p+ h

)
(3)

where F (·) is the cumulative distribution function of X (X ≥ 0). Also, we have p = p − q and

h = h− p. We make a reasonable assumption that we have h > p > q so that p and h are positive.

We can show the relationships between the optimal contract problem (2) and the well-known

newsvendor problem (Petruzzi and Dada, 1999). The main difference between the two problems is

that demand information is uncertain in the newsvendor problem, while capacity (page-views) is

uncertain in the optimal contract problem (2).

We use the following notation: order quantity Q, stochastic demand D with CDF G(·), unit

purchase cost c, unit sales price π, unit salvage value s, and unit lost opportunity cost l. We assume

π > c > s. The newsvendor problem can be formulated as following:

max
Q

E[Z(Q)] = E[πmin{Q,D} − cQ+ smax{(Q−D), 0} − lmax{(D −Q), 0}] (4)

and its solution is

Q∗ = G−1

(
π + l − c
π + l − s

)
= G−1

(
π

π + c

)
(5)

where π = π + l − c and c = c− s.
The optimal contract sizing problem (2) has a very similar structure to the newsvendor problem

(4), and in fact they are equivalent. A proof of the following proposition is provided in Appendix.

All the other proofs are also provided in Appendix.

Proposition 1. The optimal contract sizing problem (2) is a newsvendor problem with the sales

price π, the purchase cost π − p, the salvage value π − h, the lost opportunity cost −q and the

demand X, for any arbitrary π such that π > h > p > q.

For a publisher, the optimal contract size sets the upper limit so that she can decide the number

of display of advertisement she should commit. It is possible that there are many advertisers who

want to make contracts with the publisher, so that the total number of display demand is higher

than the publisher’s optimal contract size. In this case, the publisher should accept the optimal

contract size only, rejecting any demand beyond it. On the other hand, if there is demand less than

the optimal contract size, accepting all of them is the best strategy for the publisher.

3 Optimal Contract Sizing Problem: Two PPV Advertisements

The single contract sizing problem (2) with the homogeneity assumption is simple and equivalent

to the well-known newsvendor problem. However, when we take into account the case of more than

one heterogeneous PPV advertisements, the model for the optimal contract-sizing problem becomes

quickly complicated. In this section, we consider an optimal contract-sizing problem with two PPV
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advertisements that are involved with the same page. Like the single PPV advertisement problem,

we assume that only one advertisement can be displayed at a time. Therefore, it is important to

decide the display order of the two PPV advertisements. If the publisher has enough page-views

so that no PPV contract invokes penalty, the display order is not important. On the other hand,

if she does not have enough number of page-views to display the contracted numbers, the display

order becomes important, because the amount of penalty she pays depends on the display order. If

she decides to display the advertisement with highest CPM (pi) first, the other advertiser may find

this unfair which may lead to loss of future business. Also, if the advertisement with higher penalty

(hi) is displayed later, the publisher might end up paying too much as penalty if the page-view

is too low. To avoid this, if the publisher chooses to display advertisement with higher penalty

first, she might lose potential earning if page-view fails to meet the contract obligation marginally.

At least for the sake of fairness, we consider proportional display rule (d1, d2), so that the realized

number of displays of advertisement i becomes:

min

{
vi,

di
d1 + d2

X

}
where vi is the contract size (decision variable) of displays for PPV advertisement i and X is

the (stochastic) number of page-views. Since the above relation uses ratio, the unit of di is not

important. The display rule (d1, d2) would be implemented in sequence. For example, if d1 = 3

and d2 = 5, any consecutive 8 page-views will constitute three displays of advertisement 1 and five

of advertisement 2. With display rule (d1, d2), the revenue becomes:

R(v1, v2) = p1v1 + p2v2 − h1 max

[
v1 −max

{
d1

d1 + d2
X,X − v2

}
, 0

]
− h2 max

[
v2 −max

{
d2

d1 + d2
X,X − v1

}
, 0

]
+ qmax[X − (v1 + v2), 0] (6)

Here, d1
d1+d2

X is fraction of page-view capacity allocated to advertisement 1 and (X − v2) is the

remaining capacity after displaying advertisement 2. The publisher has to pay penalty for adver-

tisement 1 if v1 > max
{

d1
d1+d2

X,X − v2

}
. Using display rule (d1, d2), if the publisher finished

displaying advertisement 2, then we have X − v2 = max
{

d1
d1+d2

X,X − v2

}
. Otherwise, we have

d1
d1+d2

X = max
{

d1
d1+d2

X,X − v2

}
. For example, if we have (v1, v2) = (600, 120) and X = 500.

For (d1, d2) = (2, 1), for the first 360 page-view, 240 will be advertisement 1 while 120 will be

advertisement 2. The remaining capacity of 140 will be allocated to advertisement 1. After this,

the publisher has to pay penalty for failing to provide the remaining 220 display of advertisement

1. We can explain the case of advertisement 2 in a similar manner.

We may assume any values for di i.e. di = vi, di = pi, di = pi + hi, or di = hi. In order to be

fair to both advertisers, we consider di = vi in this study. With di = vi, if the realized number of

page-views is 10% less than what is expected, each advertisement is displayed 10% less times than

the contracted number of display regardless the price or penalty. When di = vi, objective function
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(6) reduces to:

R(v1, v2) = p1v1 + p2v2 − h1 max

[
v1 −

v1

v1 + v2
X, 0

]
− h2 max

[
v2 −

v2

v1 + v2
X, 0

]
+ qmax[X − (v1 + v2), 0] (7)

The expected value of (7) is:

E[R(v1, v2)] = p1v1 + p2v2 + qµ− {(h1v1 + h2v2)− q(v1 + v2)}F (v1 + v2)

− q(v1 + v2) +

(
h1v1

v1 + v2
+

h2v2

v1 + v2
− q
)∫ v1+v2

0
xf(x)dx

= qµ+ p̄1v1 + p̄2v2 − {(h̄1 + p̄1)v1 + (h̄2 + p̄2)v2}F (v1 + v2)

+

(
(h̄1 + p̄1)v1 + (h̄2 + p̄2)v2

v1 + v2

)∫ v1+v2

0
xf(x)dx (8)

where pi = pi − q and hi = hi − pi.
Finally, the optimal contract-sizing problem for the two PPV advertisements becomes:

max
v1,v2≥0

J = max
v1,v2≥0

E[R(v1, v2)] (9)

Note that, unlike in the aggregate optimal contract-sizing problem, for multiple PPV cases,

there is no equivalence to the newsvendor problem. Without loss of generality, we assume p1 > p2.

In this study, we only consider h1 > h2. If p1 > p2 and h1 < h2, ad 1 is always better than ad

2; therefore, we need not consider such case. We let λ1 and λ2 denote the dual variables for the

non-negativity constraints.

Considering the Karush-Kuhn-Tucker (KKT) conditions, we will investigate the following cases

separately:

v1 > 0 v1 = 0

v2 > 0 Case 1 Case 3

v2 = 0 Case 2 Case 4

When we find solutions of the KKT conditions in each case, we will have candidates for the optimum.

Let us assume h1 and h2 are not very large, so that Case 4 is never optimal. Also note that, without

a convexity of J , KKT conditions only give candidates for local optimal solutions. Before we begin,

we first obtain the following necessary condition:

Proposition 2. The following condition is necessary for an optimal solution to (9):

F (v1 + v2) =
p1v1 + p2v2

(h1 + p1)v1 + (h2 + p2)v2

(10)

8



Proofs to Proposition 2 and other subsequent lemmas and propositions are provided in Ap-

pendix. If we compare (10) with (3), we see that the total number of contract (v1 + v2) is relevant

to a weighted ratio of pi to hi + pi. Let us introduce additional notations and definitions:

M(y) =
1

y

∫ y

0
xf(x)dx, g(y) = F (y)−M(y), ∆ = (h1 + p1)− (h2 + p2),

CR1 =
p1

h1 + p1

, CR2 =
p2

h2 + p2

, CR12 =
p1 − p2

(h1 + p1)− (h2 + p2)

Note that ∆ = (h1 − p1 + p1 − q)− (h2 − p2 + p2 − q) = h1 − h2 > 0 by the assumption. Hence we

have the following relation:

CR12 < CR1 < CR2 if h1/h2 > p1/p2 (11)

CR2 < CR1 < CR12 if h1/h2 < p1/p2

For each case, we obtain the following result:

Lemma 1 (Case 1: v1 > 0, v2 > 0). Let k be a solution of the equation g(k) = CR12. If such k

exists, it is unique. Suppose the following condition holds:

CR1 < F (k) < CR2 if h1/h2 > p1/p2

CR2 < F (k) < CR1 if h1/h2 < p1/p2

Then the following pair:

v∗1 =

(
CR1 − CR12

CR2 − CR1

)(
CR2 − F (k)

F (k)− CR12

)
k

v∗2 =

(
CR2 − CR12

CR2 − CR1

)(
F (k)− CR1

F (k)− CR12

)
k

satisfies the KKT conditions. Therefore, it is a unique candidate in Case 1 for local optimum.

The conditions in Lemma 1 identify a candidate point for an optimal solution that satisfiy

the necessary condition in Proposition 2. However, we will observe later this is a saddle point in

Proposition 3. That is, the (v∗1, v
∗
2)-pair in Lemma 1 is a stationary point, but it is not a local

optimum.

Lemma 2 (Case 2: v1 > 0, v2 = 0). If the following condition is satisfied:

M(ρ1) ≥ CR1 − CR12 (12)

where ρ1 = F−1(CR1), then v∗1 = ρ1 and v∗2 = 0 is a unique KKT candidate for local optimum in

Case 2.
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Note that when h1/h2 < p1/p2, we automatically have CR1 − CR12 < 0 by equation (11),

therefore, condition (12) is always satisfied. That is, when the advertisement 1 has higher relative

revenue p1/p2 than penalty h1/h2, it is always optimal that the publisher make a contract only

with the advertisement 1.

Lemma 3 (Case 3: v1 = 0, v2 > 0). Let us have ρ2 such that F (ρ2) = CR2. If we have

M(ρ2) ≤ CR2 − CR12 (13)

then v∗1 = 0 and v∗2 = F−1(CR2) satisfy the KKT conditions; hence a unique candidate for local

optimum in Case 3.

We note that when h1/h2 < p1/p2, we automatically have CR2 − CR12 < 0 by equation (11),

therefore, the condition (13) is never satisfied. This is consistent with the discussion of Lemma 2.

As Lemmas 1, 2 and 3 only give candidates for optimum, we need to compare the objective

function values to identify the global solution. We obtain the expected revenue at the local solution

of Case 1:

E[R]Case 1 = p1v1 + p2v2 + qµ− [(h1 + p1)v1 + (h2 + p2)v2]CR12

= qµ+
p2h1 − p1h2

∆
(v1 + v2)

= qµ+
p2h1 − p1h2

∆
k (14)

where g(k) = CR12. For Cases 2 and 3, we obtain:

E[R]Case 2 = p1v1 + qµ− (h1 + p1)v1(F (v1)−M(v1))

= qµ+ (h1 + p1)v1M(v1)

= qµ+ (h1 + p1)

∫ F−1(CR1)

0
xf(x)dx (15)

and

E[R]Case 3 = qµ+ (h2 + p2)

∫ F−1(CR2)

0
xf(x)dx (16)

Note that (14) is only dependent on k. Using this fact, we provide the following proposition:

Proposition 3. The solution from Case 1, as in Lemma 1, is not a local optimum.

We make an important point: for any case, a contract to display both advertisements (v1 >

0, v2 > 0) is not optimal. Therefore, either Case 2 or Case 3 (but not both) is optimal. A contract

to display both advertisements is optimal only when they are identical, i.e., p1 = p2 and h1 = h2.

That is, publisher does not need to consider differentiated contracts (Case 1).

The optimal solution can be determined by comparing (15) and (16). When h1/h2 < p1/p2, we

know Case 3 is never optimal. Therefore, we only consider when h1/h2 < p1/p2. Comparing (15)
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Parameter Condition 1 Condition 2 Neutral Solution
Set {v∗1, v∗2}

i
p1

p2

≥ h1

h2

{
F−1

(
p1

p1 + h1

)
, 0

}
ii

p1

p2

<
h1

h2

∫ F−1(CR1)
0 xf(x)dx∫ F−1(CR2)
0 xf(x)dx

>
CR1 − CR12

CR2 − CR12

{
F−1

(
p1

p1 + h1

)
, 0

}
iii

p1

p2

<
h1

h2

∫ F−1(CR1)
0 xf(x)dx∫ F−1(CR2)
0 xf(x)dx

=
CR1 − CR12

CR2 − CR12

{
F−1

(
p1

p1 + h1

)
, 0

}
or,{

0, F−1

(
p2

p2 + h2

)}
iv

p1

p2

<
h1

h2

∫ F−1(CR1)
0 xf(x)dx∫ F−1(CR2)
0 xf(x)dx

<
CR1 − CR12

CR2 − CR12

{
0, F−1

(
p2

p2 + h2

)}
Table 1: The optimal solution for different conditions

and (16), we obtain that Case 2 is optimal if

∫ F−1(CR1)

0
xf(x)dx∫ F−1(CR2)

0
xf(x)dx

≥ CR1 − CR12

CR2 − CR12
(17)

On the other hand, Case 3 is optimal if

∫ F−1(CR1)

0
xf(x)dx∫ F−1(CR2)

0
xf(x)dx

≤ CR1 − CR12

CR2 − CR12
(18)

As multiple advertising is not optimal, either Case 2 (v1
∗ = 0, v2

∗ > 0) or Case 3 (v1
∗ > 0, v2

∗ =

0), but not both, is optimal while we have

∫ F−1(CR1)

0
xf(x)dx∫ F−1(CR2)

0
xf(x)dx

=
CR1 − CR12

CR2 − CR12
(19)

Table 1 summarizes these results for Case 2 and Case 3 based on the parameters and the

resulting conditions obtained from the parameters. Note that for parameter sets (iv), Case 2

(v1
∗ = 0, v2

∗ > 0) is the optimal solution while for parameter sets (i) and (ii), the optimal outcome

is always Case 3 (v1
∗ > 0, v2

∗ = 0). For parameter set (iii), either Case 2 or Case 3 is optimal.

In the following section, we will show that a contract to display both advertisements can be

optimal when we consider the publisher’s preference on ‘regret’ by introducing a chance constraint.
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4 Optimal Strategy Considering the Publisher’s Regret

In this section, our objective is to maximize the expected profit subject to a chance constraint,

which models the publisher’s regret and is defined as the probability of earning less than a specific

revenue (R∗) is less than or equal to the threshold probability value γ (Özler et al., 2009). In this

study, we select R∗ as the expected revenue by a solution to problem (2) or (9), which we will refer

to the Neutral Solution or Neutral Strategy.

4.1 Single PPV advertisement

As we have mentioned, the publisher considers to adopt a strategy based on the neutral contract size,

i.e., v∗ = F−1
{
p̄/(h̄+ p̄)

}
. Accordingly, she makes a contract to display the PPV advertisement

v∗ number of times. The revenue for this Neutral Strategy will be:

R(v∗) = pv∗ − hmax(v∗ −X, 0) + qmax(X − v∗, 0) (20)

The publisher will want to choose a contract size other than v∗ only if the strategy is expected

to generate more revenue than the Neutral Strategy with a probability she is willing to accept. In

other words, she wants to make a contract v other than v∗ such that the realized page-view will

generate more revenue than v∗ with a specified probability (1− γ). Let us consider the probability

that a strategy v generates higher revenue than the Neutral Strategy with a probability of at least

(1− γ). In particular, we consider the regret probability φ such that:

φ = Pr[R(v) < R(v∗)] ≤ γ (21)

Here, R(v) and R(v∗) are defined by equations (1) and (20) respectively. We may use any number

instead of R(v∗) in (21). However, in this paper, we are interested in the publisher’s regret compared

to the Neutral Strategy, and therefore (21) is relevant to the probability of regret to the Neutral

Strategy. For a conservative publisher, the value of γ is lower while γ is higher for an aggressive

publisher.

The values of φ can be found by evaluating the following expression:

R(v)−R(v∗) = p(v − v∗)− h{max(v −X, 0)−max(v∗ −X, 0)}

+ q{max(X − v, 0)−max(X − v∗, 0)} (22)
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Considering the range of X, the exact expression for equation (21) becomes (see Appendix for

details):

φ(v) =



F

(
hv + pv∗

h+ p

)
if v > v∗

1− F
(
hv∗ + pv

h+ p

)
if v < v∗

0 if v = v∗

(23)

Note that the value of φ decreases as v → v∗ because we can easily verify that:

∂φ

∂v
< 0 for all v < v∗

∂φ

∂v
> 0 for all v > v∗

Also, we find the cut-off probability:

γmin = min

{
lim

v→v∗+
φ, lim

v→v∗−
φ

}
= min{F (v∗), 1− F (v∗)} = min

{
p

h+ p
,

h

h+ p

}
Accordingly, the publisher can never be able to earn more revenue than the Neutral Strategy

with a probability greater than (1− γmin). Therefore we cannot find a strategy which will generate

more expected revenue than the neutral strategy if γ < γmin. Note that as the parameters p, h, q

or p, h are constant, the value of γmin remains constant irrespective of probability distribution of

page-view X.

Consider that the publisher wants to maximize revenue through making a contract v such that

the revenue is higher than that generated through Neutral Strategy (v∗) with a probability of at

least (1− γ) or φ ≤ γ. The problem can be written in terms of probability density and cumulative

distribution function of v as:

max
v

E[R(v)] = pv + qµ− (h+ v)vF (v) + (h+ p)

∫ v

0
xf(x)dx (24)

subject to

φ(v) ≤ γ

where φ is defined by (23).

The problem (24) for single PPV advertisement has concave objective function and piece-wise

convex feasible space. In particular, the feasible space has three continuous and convex segments

i.e., for v ∈ [0, v∗), v = v∗ or v > v∗. Problem (24) can be considered a piece-wise convex program.

A piece-wise convex program is a convex program such that the constraint set can be decomposed

in a finite number of closed convex sets such that on each of these cells, the objective function can

13



be described by a continuously differentiable convex function (Louveaux, 1978). Accordingly, the

optimal solutions to problem (24) can be obtained by finding and comparing solution obtained by

considering each concave segment of the feasible space.

4.2 Two PPV advertisements

In the case of two PPV advertisements, we find that the neutral publisher should make a contract

to display only one of the advertisements following the guidelines provided in Table 1. In this

section, we consider the publisher’s regret for the case of two PPV advertisements. Let us first

consider the expected revenue from the Neutral Strategy which is:

R(v1
∗, v2

∗) = χ1p1v1
∗ + χ2p2v2

∗ − χ1h1 max(v1
∗ −X, 0)− χ2h2 max(v2

∗ −X, 0)

+ qmax(X − χ1v1
∗ − χ2v2

∗, 0) (25)

where χi’s are binary valued and {χ1, χ2} = {1, 0} when the neutral solution, according to Table

1, is v1
∗ > 0, v2

∗ = 0; and {χ1, χ2} = {0, 1} if v1
∗ = 0, v2

∗ > 0.

Similar to the single PPV advertisement case, we consider the probability φ that an arbitrary

strategy (v1, v2) generates no more revenue than the Neutral Strategy :

φ = Pr[R(v1, v2) < R(v1
∗, v2

∗)] ≤ γ

For p1v1 + p2v2 ≤ χ1p1v1
∗ + χ2p2v2

∗, we have (see Appendix for details):

φ(v1, v2) =



F [max{min(A,χ1v1
∗ + χ2v2

∗), 0}] + 1− F [v1 + v2]

+F [max{min(v1 + v2, B), χ1v1
∗ + χ2v2

∗}]− F [χ1v1
∗ + χ2v2

∗] if v1 + v2 ≥ χ1v1
∗ + χ2v2

∗

F [max{min(A, v1 + v2), 0}] + 1

−F [max{min(χ1v1
∗ + χ2v2

∗, C), v1 + v1}] if v1 + v2 < χ1v1
∗ + χ2v2

∗

(26)

Otherwise,

φ(v1, v2) =



F [max{min(A,χ1v1
∗ + χ2v2

∗), 0}]
+F [max{min(v1 + v2, B), χ1v1

∗ + χ2v2
∗}]− F [χ1v1

∗ + χ2v2
∗] if v1 + v2 ≥ χ1v1

∗ + χ2v2
∗

F [max{min(A, v1 + v2), 0}]
+F [χ1v1

∗ + χ2v2
∗]− F [max{min(χ1v1

∗ + χ2v2
∗, C), v1 + v1}] if v1 + v2 < χ1v1

∗ + χ2v2
∗

(27)
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where

A =
(v1 + v2)

[
h1(v1 − χ1v1

∗) + h2(v2 − χ2v2
∗)
]

h1v1 + h2v2 − (χ1h1 + χ2h2)(v1 + v2)

B =
(v1 + v2)(h1v1 + h2v2 + χ1p1v1

∗ + χ2p2v2
∗)

(h1 + p1)v1 + (h2 + p2)v2

C =
p1v1 + p2v2 + χ1h1v1

∗ + χ2h2v2
∗

χ1h1 + χ2h2 − q

Likewise the single PPV advertisement case, the publisher needs to make a contract (v1, v2) by

solving the following problem:

max
v1,v2

E[R(v1, v2)] = p1v1 + p2v2 + qµ−
{

(h1 + p1)v1 + (h2 + p2)v2

}
F (v1 + v2) (28)

+
(h1 + p1)v1 + (h2 + p2)v2

(v1 + v2)

∫ v1+v2

0
xf(x)dx

subject to φ(v1, v2) ≤ γ

where φ is defined by (26) and (27).

As we have noted before, the concavity of the objective function of the problem (28) cannot be

shown. However, the following lemma can help finding a search procedure to obtain the optimal

solution.

Lemma 4. For a given v1, E[R(v1, v2)] is strictly concave with respect to v2. Similarly, for a given

v2, E[R(v1, v2)] is strictly concave with respect to v1.

Therefore, as we see in Lemma 4, for a given value of v1, we can find the optimal solution (v†2)

using any line search or gradient search procedure and vice versa. We can continue to search for

all possible values of v1 and could obtain the optimal solution (v†1, v†2) by comparison.

Let us define

R0 = E[R(v1, v2)|v1=0,v2=0] = qµ (29)

According to Lemma 4, there exist ṽ1 and ṽ2 such that:

ṽ1(v2) = arg max
v1

E[R(v1, v2)] := {ṽ1|∀v1 : E[R(v1, v2)] < E[R(ṽ1, v2)]} (30)

ṽ2(v1) = arg max
v2

E[R(v1, v2)] := {ṽ2|∀v2 : E[R(v1, v2)] < E[R(v1, ṽ2)]}

About the boundary of the feasible space, we propose the following:

Proposition 4. If v̄1 = v1 : v̄1 > ṽ1 and E[R(v̄1, 0)] ≤ R0 where ṽ1 is defined by equation (30)

and v̄2 is defined similarly, the feasible space for the problem (28) lies within 0 < v1 < v̄1 and

0 < v2 < v̄2.

From Proposition 4, we can conclude that the optimal solution, if exists, will be within space

bounded by 0 < v1 < v̄1 and 0 < v2 < v̄2. Therefore, given that a feasible solution exists, any
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search within this bounded space is guaranteed to provide the optimal solution. Based on Lemma

4 and Proposition 4, and on the fact that v1, v2 are, in fact, integers, we may propose the following

algorithm to obtain the solution to problem (28):

Step 0: Find v̄1 and v̄2 as defined in Proposition 4. Set R† = R0, (v†1, v
†
2) = (0, 0) and initial v1 = 0.

Go to step 1.

Step 1: If v1 = v̄1, Stop. The optimal solution is (v†1, v
†
2) with objective value R†. Otherwise, go to

step 2.

Step 2: Using any line search algorithm, find ṽ2(v1) and calculate R̃(v1) = E[R(v1, ṽ2(v1)]. If R̃ ≤ R†,
set v1 = v1 + 1 go to step 1. Otherwise, go to step 3.

Step 3: Find the largest integer vu2 ∈ [0, ṽ2] such that φu(v1, v
u
2 ) ≤ γ and calculate Ru = E[R(v1, v

u
2 ].

If no such vu2 exists, set Ru = −∞. Go to step 4.

Step 4: Find the smallest integer vl2 ∈ [ṽ2, v̄2) such that φl(v1, v
l
2) ≤ γ and calculate Rl = E[Ṙ(v1, v

l
2)].

If no such vl2 exists, set Rl = −∞. Go to step 5.

Step 5: Find R = max{Ru, Rl, R†}. If Ru = R, set R† = Ru and (v†1, v
†
2) = (v1, v

u
2 ). If Rl = R, set

R† = Rl and (v†1, v
†
2) = (v1, v

l
2). Set v1 = v1 + 1 and go to step 1.

Solution of problem (24) can be obtained in similar way.

5 Numerical Results

In this section, we consider the numerical values of the parameters to obtain the results for (24)

in single advertisement and (28) in two advertisements. For single advertisement case, we consider

a single set of values of the parameters (Table 2). For two advertisements cases, we consider four

different sets of parameter values as the result of the unconstrained problem depends on the relation

between the terms p1/p2, h1/h2,
∫ v∗1

0 xf(x)dx/
∫ v∗2

0 xf(x)dx and (CR1−CR12)/(CR2−CR12) (see

Table 1). The four sets of parameter values are given in table 3. For set (i), we have p1/p2 > h1/h2.

The neutral solution for this set of parameter values is Case 2 (v∗1 > 0, v∗2 = 0). For set (ii), (iii) and

(iv), we have p1/p2 < h1/h2. However, for set (ii), we have
∫ v∗1

0 xf(x)dx/
∫ v∗2

0 xf(x)dx > (CR1 −
CR12)/(CR2−CR12) and for set (iii), we have

∫ v∗1
0 xf(x)dx/

∫ v∗2
0 xf(x)dx = (CR1−CR12)/(CR2−

CR12). The neutral solution for parameter set (ii) also results in case 2. For parameter set (iii),

as we have noted in Table 1, optimal solution is either Case 2 or Case 3. For set (iv), we get∫ v∗1
0 xf(x)dx/

∫ v∗2
0 xf(xt)dx < (CR1 − CR12)/(CR2 − CR12). The neutral solution for parameter

set (iv) results in case 3 (v∗1 = 0, v∗2 > 0).
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α 20
β 50
p 1
h 1.5
q 0.75

Table 2: Parameter values for single PPV ad

Set p1 p2 h1 h2 q

i 2.25 1.5 3 2 0.25
ii 1.75 1.5 3 2 0.25
iii 1.61 1.5 3 2 0.25
iv 1.55 1.5 3 2 0.25

Table 3: Parameter values for two PPV ads

5.1 Single PPV Advertisement

For this case, we consider values of the parameters specified by Table 2. The page-view follows

gamma distribution with shape factor α = 20 and scale factor β = 50 so that the mean page-view

µ = 1000. Figure 1 shows that as v → v∗, the value of γ decreases toward γmin = min
[

p

p+h
, h
p+h

]
.

This also shows that as the contract number v deviates from v∗, the probability of generating more

revenue than the Neutral Strategy decreases. We consider same gamma distribution to find the

value of optimum solution for different values of γ. Figure 2 shows that as the value of γ increases

from γmin, the optimum contract size increases. Also, note that for γ < γmin, the problem is

infeasible.

0 500 1000 1500 2000
0

0.25

0.5

0.75

1

v

φ
=

P
r[
R
(v
)
<

R
(v

∗ )
]

v∗

p̄
p̄+h̄

h̄
p̄+h̄

Figure 1: The probability (φ) that R(v) < R(v∗)

5.2 Two PPV Advertisements

We use four sets of parameters values for considering the two PPV advertisements (Table 3). We

consider same page-view distribution i.e., gamma distribution with shape factor α = 20 and scale

factor β = 50 so that the mean page-view µ = 1000. For set (i), we have p1/p2 > h1/h2. Figure 3

shows the optimal solution as γ changes. Note that as PPV 1 advertisement has higher relative CPM

and lower relative penalty, optimal contract involves PPV 1 advertisement only. Similar to Single

PPV advertisement case, for γ < γmin, there is no feasible solution where γmin = min
[

p1
p1+h1

, h1
p1+h1

]
.
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Figure 2: Optimal contract size (v) as γ changes
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Figure 3: Optimal contract size for parameter set (i) as γ changes.

For set (ii), we have p1/p2 < h1/h2 and
∫ v∗1

0 xf(x)dx/
∫ v∗2

0 xf(x)dx > (CR1 − CR12)/(CR2 −
CR12). The optimal solution for case 2, as γ changes, is shown in Figure 4. Again, we have

γmin = min
[

p1
p1+h1

, h1
p1+h1

]
to determine the feasibility of the problem. However, for low values of γ,

the optimal contract is to have multiple contracts. This optimal contract is comprised of a major

share of PPV 1 advertisement and a small amount of PPV 2 advertisement.

For set (iii), we have p1/p2 < h1/h2 and
∫ v∗1

0 xf(x)dx/
∫ v∗2

0 xf(x)dx = (CR1 − CR12)/(CR2 −
CR12). As the neutral solution for set of parameters is either Case 2 (v∗1 > 0, v∗2 = 0) or Case 3

(v∗1 = 0, v∗2 > 0), we have numerical experiment for both Case 2 (Figure 5) and Case 3 (Figure 6).

As we see in Figure 5, when we consider Case 2 (v∗1 > 0, v∗2 = 0), the optimal solution for various

γ level is similar to parameter set (ii). When we consider Case 3 (v∗1 = 0, v∗2 > 0), the optimal

solution (Figure 5) for different γ level is similar to parameter set (iv) which will be discussed next.
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Figure 4: Optimal contract size for parameter set (ii) as γ changes.
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Figure 5: Optimal contract size for parameter set (iii) as γ changes when (v∗1 > 0, v∗2 = 0).

For set (iv), we have p1/p2 < h1/h2 and
∫ v∗1

0 xf(x)dx/
∫ v∗2

0 xf(x)dx < (CR1 − CR12)/(CR2 −
CR12). In this case, contrary to earlier cases, Neutral Strategy involves choosing PPV 2 advertise-

ment. For this, we have γmin = min
[

p2
p2+h2

, h2
p2+h2

]
. While the value of γ is low, the publisher should

choose PPV 2 advertisement (Figure 7). For lower values of γ, the optimal contract size of PPV

2 advertisement changes similar to the way the contract size PPV 1 advertisement changes in the

previous two cases. The more the publisher is more aggressive, the more of PPV 1 advertisement

she will be willing to choose. Instead, there is a value of γ, beyond which the contract strategy

involves choosing more of PPV 1 advertisement.

5.3 Insights on Multiple Contracts

We assume that p1 > p2 and h1 > h2. This means PPV 1 advertisement is high-penalty high-

revenue and PPV 2 advertisement is low-penalty low-revenue. For parameter set (ii), we find

making multiple contracts may be optimal when the publisher’s regret-probability parameter value
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Figure 6: Optimal contract size for parameter set (iii) as γ changes when (v∗1 = 0, v∗2 > 0).
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Figure 7: Optimal contract size for parameter set (iv) as γ changes.

γ is lower (Figure 4). Note that for lower values of γ, the publisher make multiple contracts where

PPV 1 advertisement is near the neutral contract size with a very small PPV 2 advertisement.

In this way, she minimizes regret through a mix of high-penalty high-revenue and low-penalty low-

revenue advertisements. As she becomes more aggressive, we find she eventually selects high-penalty

high-revenue PPV 1 advertisement only. We find similar result for parameter set (iii) when the

neutral solution is considered to be v∗1 > 0, v∗2 = 0. For parameter set (iv), we find making

multiple contracts may be optimal while the publisher is more aggressive. Note that in this case,

PPV 1 advertisement has considerably higher risk. While the value of γ is low, the publisher

minimizes regret by choosing low-penalty low-revenue PPV 2 advertisement only and thus avoids

the risk of paying high penalty (Figure 7). But, as γ becomes larger, she chooses to make multiple

contracts of both high-penalty high-revenue PPV 1 advertisement and low-penalty low-revenue PPV

2 advertisement. Parameter set (iii) also shows similar result when v∗1 = 0, v∗2 > 0 is considered.
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6 Concluding Remarks

Advertising in the Internet uses different types of display and pricing mechanism. Accordingly, there

are many new and unresolved decision problems in online advertising. The problem of finding

optimum contract size for single and two display advertisements is considered here. In display

advertising, revenue is generated through impression based pricing which uses pay-per-view (PPV)

pricing basis. We have provided and analyzed stochastic optimization formulations for optimal

contract sizing problems in online display advertising. We first considered the single contract-

sizing problem (the aggregate model). We have shown that it is equivalent to the well-known

newsvendor problem, despite the fact that uncertainty comes from the exactly opposite source

(capacity vs. demand). With this equivalence, the rich theory of the newsvendor problem will

find a new application in online advertising. We also considered an optimization problem when

there are two types of display advertisements available. Very importantly, we have shown that a

contract to display both advertisements is never optimal if the publisher is neutral and there is no

other constraint; hence we only need to consider a single contract-sizing problem. We called such

a solution the neutral solution.

For single PPV advertisement, we consider a chance constraint that models the publisher’s

regret. In particular, we considered the probability of the revenue being less than the revenue from

the neutral solution is less than or equal to a certain probability threshold. We have studied how

the solution changes as the probability threshold changes. We performed a similar study with two

PPV advertisements. Our specific findings are as follows:

1. The neutral publisher should display only one advertisement when there is no constraint.

2. It may be optimal for the publisher to display both advertisement when a chance constraint

for regret is considered.

3. For single as well as two PPV advertisements, there exists a γmin for each parameter set such

that for γ < γmin, the publisher’s problem becomes infeasible.

4. The nature of solution for different probability levels changes depending on the relation be-

tween different parameters.

We have provided a guideline for the publisher about making contact as well as the display

sequence of the advertisements. Depending on the probability, we also provide the optimum con-

tract number of advertisements for the publisher. The case of multiple (more than two) PPV

advertisements is left for future research.
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Appendix - Proofs and Derivations

Proof of Proposition 1

In the optimal contract problem (2), we have

R(v) = pv − hmax{v −X, 0}+ qmax{X − v, 0}

By letting p = π − c, h = π − s, q = −l and X = D, we obtain

R(v) = (π − c)v − (π − s) max{v −D, 0} − lmax{D − v, 0}
= πv − cv − πmax{v −D, 0}+ smax{v −D, 0} − lmax{D − v, 0}
= πmin{v,D} − cv + smax{v −D, 0} − lmax{D − v, 0}

which is equivalent to the newsvendor’s profit function Z(v) in (4). Hence proof.

Proof of Proposition 2

We have

∂J

∂v1
= p1 − (h1 + p1)F (v1 + v2) +

{(h1 + p1)− (h2 + p2)}v2

(v1 + v2)2

∫ v1+v2

0
xf(x)dx (31)

∂J

∂v2
= p2 − (h2 + p2)F (v1 + v2)− {(h1 + p1)− (h2 + p2)}v1

(v1 + v2)2

∫ v1+v2

0
xf(x)dx (32)

where F (·) is the cdf of X, f(·) is the pdf of X, pi = pi−q and hi = hi−pi. The Karush-Kuhn-Tucker
(KKT) conditions for (9) are:

λ1 = − ∂J
∂v1
≥ 0 (33)

λ2 = − ∂J
∂v2
≥ 0 (34)
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and

λ1v1 = 0 (35)

λ2v2 = 0 (36)

Without a convexity of J , these conditions only give candidates for local optimum. From (35) and
(36) we have

p1v1 − (h1 + p1)v1F (v1 + v2) +
{(h1 + p1)− (h2 + p2)}v1v2

(v1 + v2)2

∫ v1+v2

0
xf(x)dx = 0 (37)

p2v2 − (h2 + p2)v2F (v1 + v2)− {(h1 + p1)− (h2 + p2)}v1v2

(v1 + v2)2

∫ v1+v2

0
xf(x)dx = 0 (38)

By adding (37) and (38), we obtain:

F (v1 + v2) =
p1v1 + p2v2

(h1 + p1)v1 + (h2 + p2)v2

(39)

Proof of Lemma 1

Let us assume v1 > 0 and v2 > 0 for the KKT conditions. In the complementarity conditions (35)
and (36), let us suppose v1 > 0 and v2 > 0. Then, we must have ∂J

∂v1
= 0 and ∂J

∂v2
= 0. Then we

have ∂J
∂v1
− ∂J

∂v2
= 0. That is,

(p1 − p2)− {(h1 + p1)− (h2 + p2)}F (k) +
{(h1 + p1)− (h2 + p2)}k

k2

∫ k

0
xf(x)dx = 0

where k = v1 + v2. This leads to:

F (k)− 1

k

∫ k

0
xf(x)dx =

p1 − p2

(h1 + p1)− (h2 + p2)
= CR12

which can be written as
g(k) = F (k)−M(k) = CR12 (40)

We note that g(k) is a strictly increasing function of k for all k > 0, since its first-order derivative
is

g′(k) =
1

k2

∫ k

0
xf(x)dx > 0

Therefore, if the solution to (40) exists, it is unique.
Using ∂J

∂v1
= 0, F (k)−M(k) = CR12 and v1 + v2 = k, we obtain v2 as a function of k:

v2 =
(h1 + p1)F (k)− p1

∆
kM(k)

=

(
CR2 − CR12

CR2 − CR1

)(
F (k)− CR1

F (k)− CR12

)
k
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Similarly, using ∂J
∂v2

= 0, F (k)−M(k) = CR12 and v1 + v2 = k, we obtain

v1 =

(
CR1 − CR12

CR2 − CR1

)(
CR2 − F (k)

F (k)− CR12

)
k

To ensure v1 > 0 and v2 > 0, F (k) needs to satisfy certain conditions. In particular, if h1/h2 >
p1/p2, then CR1 < F (k) < CR2; if h1/h2 < p1/p2, then CR2 < F (k) < CR1, by equation (11).

Proof of Lemma 2

In the complementarity conditions (35) and (36), let us suppose v1 > 0 and v2 = 0. Then, we must
have ∂J

∂v1
= 0 and λ2 = − ∂J

∂v2
≥ 0. That is,

∂J

∂v1
= p1 − (h1 + p1)F (v1) = 0

Therefore we obtain F (v1) = CR1. Also we have

∂J

∂v2
= p2 − (h2 + p2)F (v1)−∆M(v1) ≤ 0

Dividing the both sides by (h2 + p2), we obtain

CR2 − CR1 −
∆

h2 + p2

M(v1) ≤ 0

or

M(v1) ≥ (CR2 − CR1)
h2 + p2

∆
= CR1 − CR12

Proof of Lemma 3

In the complementarity conditions (35) and (36), let us suppose v1 = 0 and v2 > 0. Then, we must
have λ1 = − ∂J

∂v1
≥ 0 and ∂J

∂v2
= 0. From these two conditions, we obtain the following results as

similar to the proof of Lemma 2:

F (v2) = CR2

M(v2) ≤ CR2 − CR12

Proof of Proposition 3

When v1 > 0 and v2 > 0 satisfy the KKT conditions (Case 1), then k = v1 + v2 is uniquely
determined. Therefore, (v1, v2) is also uniquely determined. Let us now consider a point (u1, u2) =
(v1 +δ, v2−δ) for a constant δ. We note u1 +u2 = k. Therefore we have E[R(v1, v2)] = E[R(u1, u2)].

However, we know (u1, u2) is not a local optimum (it does not satisfy the KKT conditions).
That is, there exists a point (w1, w2) ∈ Nε1(v1, v2) such that E[R(w1, w2)] > E[R(u1, u2)] for all
ε1 > 0, where Nε denotes the ε-neighborhood. By making |δ| and ε1 arbitrarily small, we can make
(w1, w2) ∈ Nε2(v1, v2) for any ε2 > 0 and E[R(w1, w2)] > E[R(v1, v2)]. Therefore (v1, v2) is not a
local optimum.
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Calculation of φ(v) in equation (23) in Section 4.1

R(v)−R(v∗) = p(v−v∗)−h{max(v−X, 0)−max(v∗−X, 0)}+q{max(X−v, 0)−max(X−v∗, 0)}

Depending on the range of X, the value of right hand side of equation (22) is:

R(v)−R(v∗) =



h(v∗ − v) if X ≤ min(v∗, v)

(h+ p)X − hv − pv∗ if v∗ < X ≤ v

−X(h+ p) + pv + hv∗ if v < X ≤ v∗

p(v − v∗) if max(v∗, v) < X

where p = p− q and h = h− p. Suppose, v > v∗ , then we have

R(v)−R(v∗) =


h(v∗ − v) if X ≤ v∗

(h+ p)X − hv − pv∗ if v∗ < X ≤ v

p(v − v∗) if v < X

Therefore

R(v)−R(v∗) ≤ 0 if X <
hv + pv∗

h+ p

R(v)−R(v∗) > 0 if X ≥ hv + pv∗

h+ p

Consequently, we obtain

φ(v) = Pr

[
X ≤ hv + pv∗

h+ p

]
= F

(
hv + pv∗

h+ p

)
if v > v∗

With similar analysis, the exact expression for equation (21) becomes:

φ(v) =



F

(
hv + pv∗

h+ p

)
if v > v∗

1− F
(
hv∗ + pv

h+ p

)
if v < v∗

1 if v = v∗
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Calculation of φ(v1, v2) in equations (26) and (27) in Section 4.2

The values of φ can be obtained by considering R(v1, v2)−R(v1
∗, v2

∗) with the range of X:

R(v1, v2)−R(v1
∗, v2

∗) =



−
[
h1(v1 − χ1v1

∗) + h2(v2 − χ2v2
∗)
]

+h1v1+h2v2−(χ1h1+χ2h2)(v1+v2)
v1+v2

X if X ≤ min[(v1 + v2), χ1v1
∗ + χ2v2

∗]

−(h1v1 + h2v2 + χ1p1v1
∗ + χ2p2v2

∗)

+ (h1+p1)v1+(h2+p2)v2
v1+v2

X if χ1v1
∗ + χ2v2

∗ < X ≤ (v1 + v2)

p1v1 + p2v2 + χ1h1v1
∗ + χ2h2v2

∗

−(χ1h1 + χ2h2 − q)X if (v1 + v2) < X ≤ χ1v1
∗ + χ2v2

∗

p1v1 + p2v2 − (χ1p1v1
∗ + χ2p2v2

∗) if max[(v1 + v2), χ1v1
∗ + χ2v2

∗] < X

Let us define

A =
(v1 + v2)

[
h1(v1 − χ1v1

∗) + h2(v2 − χ2v2
∗)
]

h1v1 + h2v2 − (χ1h1 + χ2h2)(v1 + v2)

B =
(v1 + v2)(h1v1 + h2v2 + χ1p1v1

∗ + χ2p2v2
∗)

(h1 + p1)v1 + (h2 + p2)v2

C =
p1v1 + p2v2 + χ1h1v1

∗ + χ2h2v2
∗

χ1h1 + χ2h2 − q

We can derive φ by considering two cases: (1) v1+v2 ≥ χ1v1
∗+χ2v2

∗ and (2) v1+v2 < χ1v1
∗+χ2v2

∗.
Consider the case v1 + v2 ≥ χ1v1

∗ + χ2v2
∗. We can obtain the result that R(v1, v2) ≤ R(v1

∗, v2
∗)

only when one of the following set of conditions is met:

(i) X ∈ [0, χ1v1
∗ + χ2v2

∗] and X ∈ [0, A]

(ii) X ∈ (χ1v1
∗ + χ2v2

∗, v1 + v2] and X ∈ [χ1v1
∗ + χ2v2

∗, B]

(iii) X ∈ (v1 + v2,∞) and p1v1 + p2v2 ≤ χ1p1v1
∗ + χ2p2v2

∗

Similarly, for the case v1 + v2 < χ1v1
∗+χ2v2

∗ one of the following conditions needs to be satisfied:

(i) X ∈ [0, v1 + v2] and X ∈ [0, A]

(ii) X ∈ (v1 + v2, χ1v1
∗ + χ2v2

∗] and X ∈ [C,∞)

(iii) X ∈ (χ1v1
∗ + χ2v2

∗,∞) and p1v1 + p2v2 ≤ χ1p1v1
∗ + χ2p2v2

∗

From the above results, for p1v1 + p2v2 ≤ χ1p1v1
∗ + χ2p2v2

∗, we can obtain:

φ(v1, v2) =


F [max{min(A,χ1v1

∗ + χ2v2
∗), 0}] + 1− F [v1 + v2]

+F [max{min(v1 + v2, B), χ1v1
∗ + χ2v2

∗}]− F [χ1v1
∗ + χ2v2

∗] if v1 + v2 ≥ χ1v1
∗ + χ2v2

∗

F [max{min(A, v1 + v2), 0}] + 1
−F [max{min(χ1v1

∗ + χ2v2
∗, C), v1 + v1}] if v1 + v2 < χ1v1

∗ + χ2v2
∗
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Otherwise,

φ(v1, v2) =


F [max{min(A,χ1v1

∗ + χ2v2
∗), 0}]

+F [max{min(v1 + v2, B), χ1v1
∗ + χ2v2

∗}]− F [χ1v1
∗ + χ2v2

∗] if v1 + v2 ≥ χ1v1
∗ + χ2v2

∗

F [max{min(A, v1 + v2), 0}]
+F [χ1v1

∗ + χ2v2
∗]− F [max{min(χ1v1

∗ + χ2v2
∗, C), v1 + v1}] if v1 + v2 < χ1v1

∗ + χ2v2
∗

Proof of Lemma 4

Consider v2 is constant. Differentiating E[R(v1, v2)] with respect to v1, we obtain:

∂E[R(v1, v2)]

∂v1
= p1 − (h1 + p1)F (v1 + v2) +

{(h1 + p1)− (h2 + p2)}v2

(v1 + v2)2

∫ v1+v2

0
xf(x)dx

Differentiating again, we get

∂2E[R(v1, v2)]

∂v1
2 = −

[
f(v1 + v2)

v1 + v2
[(h1 + p1)v1 + (h2 + p2)v2] +

2(h1 − h2)v2

(v1 + v2)2

∫ v1+v2

0
xf(x)dx

]
< 0

Similarly, when v1 is constant, we can prove that ∂2E[R(v1,v2)]

∂v2
2 ≤ 0.

Proof of Proposition 4

Suppose v1 is constant. Since E[R(v1, v2)] is concave with respect to v2 by Lemma 4, we have

∂E[R(v1, v2)]

∂v2

∣∣∣∣
v̄2>ṽ2

< 0

Therefore, E[R(v1, v2)] is decreasing for v2 > ṽ2.

For case 1 and 2 of Table 1, the neutral solution is
(
F−1

{
p1−q
h1−q

}
, 0
)

. Therefore,

E
[
R

(
F−1

{
p1 − q
h1 − q

}
, 0

)]
= (p1 − q)v1 + qµ− (h1 − q)v1

p1 − q
h1 − q

+ (h1 − q)
∫ F−1

{
p1−q
h1−q

}
0

xf(x)dx

= qµ+ (h1 − q)
∫ F−1

{
p1−q
h1−q

}
0

xf(x)dx > R0

Similarly, for case 3 of Table 1, we have

E
[
R

(
0, F−1

{
p2 − q
h2 − q

})]
= qµ+ (h2 − q)

∫ F−1
{

p2−q
h2−q

}
0

xf(x)dx > R0

In both cases, we have E[R(v1, v̄2)] < R0 < E[R(v∗1, v
∗
2)] and Constraint of the problem (28) is never

satisfied. Therefore, for each v1 fixed, any v2 such that v2 > ṽ2(v1) and E[R(v1, ṽ2(v1))] < R0 is
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not a solution to problem (28). Similar result holds vice versa. Now, we have:

E[R(0, v̄2)] = qµ+

[
(p2 − q)v̄2 − (h2 − q)v̄2F [v̄2] + (h2 − q)

∫ F−1[v̄2]

0
xf(x)dx

]

= R0 +

[
(p2 − q)v̄2 − (h2 − q)v̄2F [v̄2] + (h2 − q)

∫ F−1[v̄2]

0
xf(x)dx

]
≤ R0

Therefore, (p2− q)v̄2− (h2− q)v̄2F [v̄2] + (h2− q)
∫ F−1[v̄2]

0 xf(x)dx ≤ 0. As E[R(0, v̄2)] is decreasing
for v2 ≥ v̄2, any increase in total contract size will further decrease the E[R], i.e. E[R(v1, v̄2)] <
E[R(0, v̄2)].
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