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Abstract

We consider a robust facility location problem for hazardous materials (hazmat)

transportation considering routing decisions of hazmat carriers. Given a network and a

known set of nodes from which hazmat originate, we compute the locations of hazmat

processing sites (e.g. incinerators) which will minimize total cost, in terms of fixed

facility cost, transportation cost, and exposure risk. We assume that hazmat will be

taken to the closest existing processing site. We present an exact full enumeration

method, which is useful for small or medium-size problems. For larger problems, the

use of a genetic algorithm is explored. Through numerical experiments, we discuss

the impact of uncertainty and robust optimization in the hazmat combined location-

routing problem.

1 Introduction

Hazardous wastes are generated by a large variety of commercial and industrial processes,

on both small and large scale, dispersed throughout developed areas. They vary from

the small amounts of waste generated by urban businesses such as dry cleaners and auto

repair shops, to larger amounts produced by chemical plants and other heavy industries.

For the most part, the producers of waste are responsible for arranging to dispose of it at

appropriate processing or long-term storage facilities. The shippers of such waste typically
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make their own choices about which routes to follow to transport waste to the processing

site. These decisions are therefore out of the control of planners, though route choices

may be influenced by tolls or road bans.

In this paper, we formulate a mathematical optimization model that combines location

and routing decisions for hazardous waste facilities under uncertainty. The literature on

location and routing problems related to hazardous materials is extensive. An earlier

survey of the area is Erkut and Neuman (1989). Alumur and Kara (2007) also include

a fairly substantial literature review, though their work is not a survey as such. There

are many different ways of approaching problems related to what are generally termed

“obnoxious” facilities. Such facilities are necessary, but the facilities as well as transport

going to and/or from them are undesirable, potentially dangerous or both. Because of this

it will be undesirable to locate these facilities in certain areas. However, for a facility to

be useful as well as to reduce the undesirable effects of transporting hazardous materials

over long distances, it must be within a reasonable distance of the need it serves. As

a result, locating such facilities represents a trade off between the desire to avoid risk

and “obnoxiousness”, which could result in the facility being located in some very remote

area, and the desire for the facility to be cost effective, which would mean locating it in

reasonable proximity to the demand it serves. For obnoxious facility location and routing

models to address these conflicting objectives, they may optimize a weighted combination

of cost and risk (as well as perhaps other objectives such as fairness), they may minimize

risks subject to keeping cost below a given threshold, or minimize cost subject to keeping

risk below some maximum acceptable level.

There are also a variety of approaches when both facility location and routing are con-

cerned in the context of hazardous materials (hazmat). Some studies assume facility loca-

tions are given and solve a routing problem, and some solve a combined location and rout-

ing problem. The first study on combined location-routing decisions may be Zografos and

Samara (1989), who propose a goal-programming approach to minimize multi-objectives

of travel time, transportation risk, and disposal risk. ReVelle et al. (1991) choose sites

and routes so as to minimize a convex combination of distance traveled and population

exposure. List and Mirchandani (1991) consider equity for a combined location-routing

problem, and Jacobs and Warmerdam (1994) use a linear programming based model for

both the location of processing sites and the routing of hazardous waste for a single type of

hazardous waste. Stowers and Palekar (1993) propose a combined model that minimizes

the population exposure from transportation and long-term storage of hazardous wastes.

Current and Ratick (1995) propose a multiobjective, mixed integer program considering

minimization of cost and risk, and maximization of equity, and Giannikos (1998) presents

a goal programming model considering minimization of operating cost and perceived risk,
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and equitable distribution of risk and disutility. Nema and Gupta (1999) create a model

for the location of sites and the routing of waste with a composite objective function

weighting risk and cost for multiple waste types. Cappanera et al. (2003) propose a dis-

crete combined location-routing model that is referred as the Obnoxious Facility Location

and Routing (OFLR) model and solved by a Lagrangean relaxation. Alumur and Kara

(2007) use a multi-objective model (cost and exposure) for a deterministic problem where

they find optimal sites for waste processing and disposal, and optimal routes between

waste generation points, processing sites and disposal sites.

There are also related hazmat network-design problems that consider routing when

the locations of origin-destination pairs are given. Kara and Verter (2004) assume that

origin and destination points for hazardous material shipments are known, and address

the problem of minimizing exposure risk by banning hazardous shipments from traveling

on certain network arcs. Garrido (2008) and Marcotte et al. (2009) approach similar

problems not by a road ban method but by road pricing, and Wang et al. (2012) extend

the concept with dual-toll pricing policy. Erkut and Alp (2007) create a minimal road

network (a tree or set of trees) for hazmat transport, then use a greedy algorithm to

augment the network with links which will decrease cost and exposure risk. Erkut and

Gzara (2008) provide a bi-level optimization approach for hazmat network design and

propose a heuristic method. Bianco et al. (2009) consider a similar bi-level approach and

Gzara (2012) provides a cutting-plane algorithm for hazmat network design. Bianco et al.

(2013) overview the hazmat network design literature. Hazmat network design problems

are often referred as global routing problems as opposed to local routing problems that

determine a safe path between a single origin-destination pair.

Literature on local hazmat routing is abundant. We refer readers to a handbook

chapter by Erkut et al. (2007) and references therein. A key to any local routing method

is how to assess risk in a path. Various risk measures are introduced and corresponding

optimization methods are devised. Erkut and Verter (1998) and Erkut and Ingolfsson

(2005) discuss axioms that risk measures in hazmat routing are recommended to satisfy.

For risk-averse routing, Bell (2006) considers mixed route strategies, and advanced risk

measures such as value-at-risk and conditional value-at-risk are also considered in Kang

et al. (2013) and Toumazis et al. (2013). A robust measure considering the worst-case is

also introduced in Kwon et al. (2013).

This paper inherits the modeling components of the OFLR model of Cappanera et al.

(2003). However, the proposed model of this paper has a unique modeling component

that is not found in other combined location-routing models: independent behavior of

hazmat carriers. While other combined models simply assign a path to each shipment, we

assume that hazmat carriers are independent entities from the hazardous waste facility
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operators. When carriers and operators are the same, assigning a path to each shipment is

possible. On the other hand, when the two groups are independent, such assignments are

inappropriate or often impossible. Therefore we assume that the hazmat carriers select

the shortest-path based on distances only. This modeling approach is common in the

above-mentioned, more recent hazmat network design literature (Kara and Verter, 2004;

Erkut and Alp, 2007; Erkut and Gzara, 2008; Marcotte et al., 2009; Bianco et al., 2009;

Gzara, 2012). Therefore the proposed model in this paper has a similar model structure

including bi-level mixed integer programming.

In the non-hazmat context, the location-routing problems are also well-studied. Earlier

problems are reported in Franca and Luna (1982) and Laporte (1988), and comprehensive

reviews are provided by Min et al. (1998) and Nagy and Salhi (2007). Stochastic location-

routing problems are studied in Laporte et al. (1989) and in Albareda-Sambola et al.

(2007) where the location decision and a priori routing decision are made in the first-stage

and the routing recourse are determined in the second-stage. More recent studies on the

combined location-routing problems include Shen (2007), Klibi et al. (2010), Bozkaya et al.

(2010), and Toyoglu et al. (2012). We also refer the readers to Snyder (2006) for a review

of facility location problems under uncertainty.

In hazmat location and routing problems, methods based on stochastic programming

are less effective. This is because historical data are rarely sufficient to construct mean-

ingful probability distributions for modeling parameters such as accident consequences.

Although there are many accidents involving hazmat in the entire network, hazmat ac-

cidents are still rare events for each road segment or for each region. In addition, the

consequences depend on various uncertain factors such as weather conditions, the number

of people involved at the accident, the evacuation effectiveness, and the severity of the

accident. Such uncertain factors make a probabilistic estimation of accident consequences

difficult. This property makes a robust optimization approach more appropriate. To the

best of our knowledge, this paper is the first attempt to solve a facility location and rout-

ing problem involving uncertainty by an robust optimization approach in hazardous waste

management. A noxious facility location problem under uncertainty (Killmer et al., 2001)

has been studied, but not combined with routing.

Robust optimization approaches to location problems, which are not combined with

routing decisions, in the non-hazmat context include Averbakh and Berman (1997, 2000a,b),

Carrizosa and Nickel (2003), Baron et al. (2011), and Gülpınar et al. (2013). However for

the combined problems there seems to be no research using robust optimization reported

in the literature. It may be because applying robust optimization methods to combined

problems considering both demand uncertainty and transportation cost uncertainty re-

quires treatment of multiplicative uncertain parameters, and an appropriate approach has
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only recently been proposed by Kwon et al. (2013). In addition, most robust optimization

approaches consider only demand uncertainty. While demand uncertainty is the primary

source of uncertainty in many location and transportation problems, transportation risk

(transportation cost in general) is also a significant source of uncertainty in the hazmat

context.

In most cases, hazmat facility location-routing problems are formulated as a 0-1 mixed

integer program and solved by commercial optimization solvers like CPLEX or LINDO.

One notable exception is the OFLR model by Cappanera et al. (2003) who solve the prob-

lem by a Lagrangean relaxation. In this paper, we provide a 0-1 mixed integer program-

ming formulation that is solvable by CPLEX when the problem size is small. Sometimes

we find that CPLEX fails to solve the problem even when the problem size is as small as

90-node. For such cases, we propose a genetic algorithm. While Lagrangean relaxation

methods are popularly used for location problems and for the OFLR model, it seems in-

appropriate for the problem in this paper as the problem structure involves two additional

levels: one to model carriers’ behavior and the other to consider robustness.

In summary, the unique characteristics of the proposed model and the contributions

of this paper are as follows:

• This research studies a hazardous waste facility location problems under demand

and risk uncertainty.

• This research applies a robust optimization methodology for a combined location-

routing problem.

• This research models independent route-choice behavior of hazmat carriers.

• This research provides a single-level mixed-integer program reformulation of the

proposed location-routing model that is solvable by a commercial solver when the

problem size is small. A genetic algorithm is proposed for large-scale problems.

For the present work we will assume that the origin points for hazardous waste are

known, but the destination points (waste treatment or disposal sites) are not. We will then

find the set of locations for waste processing sites which minimizes a linear combination

of fixed facility cost and the risk posed by the shipment of hazardous wastes (e.g. due to

spills). We will assume that the shipment of the waste will be done by third-party carriers

who seek to minimize their own costs (that is, that they will take the shortest path to the

nearest waste processing facility), and that they are not affected by tolls or road bans.

(Or rather, if tolls or road bans do exist they are a fait accompli reflected in the existing

arc costs of our network rather than something we need to calculate ourselves.)
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2 Model

Assume that hazardous waste is generated at some known subset of the nodes of the net-

work. Our goal is to choose, from some set of suitable network nodes, sites for facilities

where this waste may be processed (treated, incinerated, etc.). If the cost of transport-

ing the waste is borne by the shipper, and neither road bans nor tolls are in place, we

will expect waste shipments to follow the lowest-cost route to any processing facility.

Given this assumption, what is the choice of processing site locations which will minimize

cost/exposure risk?

We will use the following notation:

• N : set of nodes i

• A: set of arcs (i, j)

• G ≡ (N ,A)

• Lij : length of arc (i, j)

• Rij : a measure of the exposure risk due to one truck carrying hazardous waste

through arc (i, j).

• S: set of hazardous waste shipments

• o(s): the node at which shipment s ∈ S originates

• M: the set of candidate locations for facilities to handle waste. We will assume

o(s) /∈M for all s.

• Fi: facility construction cost at node i ∈M

• N s: the number of trucks required for shipment s

• yi: 1 if a waste processing facility is located at node i, 0 otherwise

• xsij : 1 if link (i, j) is used for shipment s, 0 otherwise.

2.1 Nominal Problem

For the nominal (deterministic) problem, we assume that N s, the number of shipments

originating from each site, is known exactly, as is Rij , the exposure risk for each network

arc. In this case we minimize facility construction cost plus exposure risk which is known

with certainty for a given value of y. Note that as exposure risk and construction cost are
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not directly comparable we will have to make some sort of a trade-off between these two

components of the objective function (that is, place a dollar amount on a unit of exposure

risk). A higher dollar cost can be placed on a unit of exposure if the decision maker is

risk averse, and a lower figure if he is less so. This results in the formulation:

min
yi∈{0,1}

w1

∑
i∈M

Fiyi + w2

∑
(i,j)∈A

Lijx
s
ij(y) + w3

∑
(i,j)∈A

∑
s∈S

N sRijx
s
ij(y)

 (1)

where xs(y) defines a shortest path routing for shipment s given the set of possible disposal

sites specified by the vector y, namely:

xs(y) = arg min
xs∈Xs(y)

∑
(i,j)∈A

Lijx
s
ij ∀s ∈ S (2)

and Xs(y), the set of feasible flows, is defined by

∑
(i,k)∈A

xsik −
∑

(k,i)∈A

xski


= +1 i = o(s)

≥ −yi i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S (3)

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S (4)

In the objective function (1) of the upper-level problem, w1, w2, and w3 represent the

weight for each cost component. The first part represents the facility construction cost.

The second part is the transportation cost. The weight factor w2 may have two different

meanings depending on the context. It may reflect the actual transportation cost that is

required for hiring carriers, or may reflect the hazmat facility location decision maker’s

interest in reducing transportation cost so as to prevent the case when the facilities are

located too far away. The weight factor w2 may also be zero. The third part represents

the risk component.

Constraints (3) specify that any node i which is an origination point for waste must

have a positive net outflow (xsij = 1). Nodes which are neither waste origin points nor

waste processing sites must have a zero net outflow (xsij = 0). Any node i which is eligible

to be a waste processing site (i ∈ M) may have a negative net outflow of waste if i is

selected as a processing site (and therefore yi = 1), otherwise it must have a zero net

outflow.

For uncertain N s and Rij we may define a number of uncertain problems. For example,

if the mean values of N s and Rij are known we may simply solve a problem equivalent

to the above where we seek to minimize the total cost in the event that the uncertain
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parameters take their mean values. If the N s and Rij are uncertain but have known

probability distributions, we may formulate a stochastic problem where the expected total

cost is minimized.

2.2 Robust Problem with Budgeted Uncertainty Sets

In practice we may have limited information about uncertain parameters. Where prob-

ability distributions or even mean values are unknown, robust optimization is a useful

technique. We define a bounding box where each uncertain parameter is constrained to

fall within a specified range, and the total deviation from nominal values is limited by a

budget of uncertainty. In this case, we define two separate budgets, one for the uncertainty

in the number of trucks required for a given shipment and another for the uncertainty in

exposure risk for a given arc. The robust problem therefore becomes:

min
yi∈{0,1}

{
w1

∑
i∈M

Fiyi+w2

∑
(i,j)∈A

Lijx
s
ij(y)+w3 max

u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

[N s+Ksus][Rij+Qijvij ]x
s
ij(y)

}

subject to (2)-(4) above, which define the shortest feasible flow. Qij is the width of the

uncertainty in exposure risk for arc (i, j) and Ks is the width of the uncertainty in the

number of trucks required to transport shipment s. Note that N s and Rij now denote the

minimum number of trucks and minimum exposure risk r, respectively. The uncertainty

sets U and V with budgets of uncertainty Γu and Γv respectively are defined by

U =

{
u :
∑
s∈S

us ≤ Γu, 0 ≤ us ≤ 1

}

V =

{
v :

∑
(i,j)∈A

vij ≤ Γv, 0 ≤ vij ≤ 1

}
Note that we have two uncertainty sets, each with its own separate budget. As was

shown in Kwon et al. (2013), it is not necessarily possible to model the problem accurately

(or find the solution which minimizes risk) with a single budget. In addition, because the

two uncertain parameters are for each shipment s and each arc (i, j), respectively, it is

not obvious how we would build a single merged uncertainty set.

2.2.1 Linearization of the Lower-Level Problem

Our first step in solving the problem will be to convert it from a bi-level problem to a single

level problem. We begin with the fact that, for any given y, the lower-level shortest path

problem is unimodular, as noted by Kara and Verter (2004), and must therefore have an
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integral optimal solution. Therefore the problem is equivalent to that obtained by relaxing

the binary constraints on the xsij . The relaxed version of the lower-level problem is

min
xs

∑
(i,j)∈A

Lijx
s
ij

subject to

(−ζsi )
∑

(i,k)∈A

xsik −
∑

(k,i)∈A

xski


= +1 i = o(s)

≥ −yi i ∈M

= 0 otherwise

∀i ∈ N (5)

(φsij) − xsij ≤ 0 ∀(i, j) ∈ A, s ∈ S (6)

Note that we omit the constraint xsij ≤ 1. We can do this because although feasible

solutions may exist with some xsij > 1 (but satisfying all other constraints), no such

solution will ever be optimal (for such a solution it is easy to show how to construct a

lower-cost solution). Let us introduce dual variables −ζsi and φsij for constraints (5) and

(6), respectively. Please note that the ‘-’ sign in −ζsi is just to match with the common

notational convention in the shortest-path related literature. The KKT conditions for the

above problem are

Lij − ζsi + ζsj − φsij = 0 ∀(i, j) ∈ A (7)

φsijx
s
ij = 0 ∀(i, j) ∈ A (8)(

−
∑

(i,k)∈A

xsik +
∑

(k,i)∈A

xski − yi
)
ζi = 0 ∀i =M (9)

φsij ≥ 0 ∀(i, j) ∈ A (10)

ζsi ≥ 0 ∀i ∈M (11)

A more detailed development of these KKT conditions is given in Appendix A. The

complementarity conditions (8) can be linearized using a large number M as follows:

φsij ≤M(1− xsij) ∀(i, j) ∈ A

Similarly the other complementarity conditions (9) can be linearized as:

ζsi ≤M

[
1−

( ∑
(i,k)∈A

xsik −
∑

(k,i)∈A

xski + yi

)]
∀i ∈M
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Therefore the robust hazardous waste facility location problem becomes:

min
yi∈{0,1}

{∑
i∈M

Fiyi + max
u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij [N
s +Ksus][Rij +Qijvij ]

}

subject to

∑
(i,k)∈A

xsik −
∑

(k,i)∈A

xski


= 1 i = o(s)

≥ −yi i ∈M

= 0 otherwise

∀i ∈ N

Lij − ζsi + ζsj − φsij = 0 ∀(i, j) ∈ A

φsij ≤M(1− xsij) ∀(i, j) ∈ A

ζsi ≤M

[
1−

( ∑
(i,k)∈A

xsik −
∑

(k,i)∈A

xski + yi

)]
∀i ∈M

φsij ≥ 0 ∀(i, j) ∈ A

ζsi ≥ 0 ∀i ∈M

ζsi free ∀i /∈M

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

2.2.2 Linearization and Dualization of the Inner Maximization Problem

We proceed to linearize the inner maximization problem and then convert it into a mini-

mization problem by replacing it with its dual, whereupon we will be left with an ordinary

mixed-integer linear programming problem. To do so, first we note that the objective func-

tion of the inner maximization problem can be written as follows:

max
u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij [N
s +Ksus][Rij +Qijvij ]

= max
u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij [N
sRij +N sQijvij +KsRiju

s +KsQiju
svij ]

=

[ ∑
(i,j)∈A

∑
s∈S

xsijN
sRij + max

u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij

{
N sQijvij +KsRiju

s +KsQiju
svij

}]
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For any given x, the inner maximization problem is equivalent to the following:

max
u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij

{
N sQijvij +KsRiju

s +KsQiju
svij

}
subject to

U =

{
u :
∑
s∈S

us ≤ Γu, 0 ≤ us ≤ 1

}

V =

{
v :

∑
(i,j)∈A

vij ≤ Γv, 0 ≤ vij ≤ 1

}
which can be linearized as follows (Kwon et al., 2013):

max
u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij

{
N sQijvij +KsRiju

s +KsQijw
s
ij

}
subject to

us ≤ 1 (ρs)

vij ≤ 1 (µij)

−us + wsij ≤ 0 (ηsij)

−vij + wsij ≤ 0 (πsij)∑
s∈S

us ≤ Γu (θu)∑
(i,j)∈A

vij ≤ Γv (θv)

us, vij , w
s
ij ≥ 0

The dual problem of the above problem is:

min
θu,θv ,ρ,µ,η,π

Γuθu + Γvθv +
∑

(i,j)∈A

µij +
∑
s∈S

ρs


subject to

ρs −
∑

(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRijx
s
ij ∀s ∈ S

µij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQijx
s
ij ∀(i, j) ∈ A
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ηsij + πsij ≥ KsQijx
s
ij ∀s ∈ S, (i, j) ∈ A

ρs, µij , η
s
ij , π

s
ij , θu, θv ≥ 0

2.2.3 Single-Level Robust Facility Location Problem

Replacing the inner maximization problem with its dual, we obtain a single-level opti-

mization problem of the form:

min
yi∈{0,1}

{
w1

∑
i∈M

Fiyi+w2

∑
(i,j)∈A

Lijx
s
ij+w3

( ∑
(i,j)∈A

∑
s∈S

N sRijx
s
ij+Γuθu+Γvθv+

∑
(i,j)∈A

µij+
∑
s∈S

ρs
)}

subject to

∑
(i,k)∈A

xsik −
∑

(k,i)∈A

xski


= +1 i = o(s)

≥ −yi i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

Lij − ζsi + ζsj − φsij = 0 ∀(i, j) ∈ A

φsij ≤M(1− xsij) ∀(i, j) ∈ A

ζsi ≤M

[
1−

( ∑
(i,k)∈A

xsik −
∑

(k,i)∈A

xski + yi

)]
∀i ∈M

φsij ≥ 0 ∀(i, j) ∈ A

ζsi ≥ 0 ∀i ∈M

ζsi free ∀i /∈M

ρs −
∑

(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRijx
s
ij ∀s ∈ S

µij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQijx
s
ij ∀(i, j) ∈ A

ηsij + πsij ≥ KsQijx
s
ij ∀(i, j) ∈ A, s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

ρs, µij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i, j) ∈ A, s ∈ S

This is a mixed integer linear program with all integers being binary. Small instances

may be solved using CPLEX. Beyond a certain problem size, however, CPLEX requires too

much memory. (For example, a problem with |N | = 1000 |A| = 3000 and |S| = 20 requires

203,080 constraints (not including nonnegativity and binarity constraints) and 264,022
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decision variables.) We must therefore use a heuristic to find good-quality solutions for

larger problems.

CPLEX sometimes fails to solve even small examples (e.g. the 90-node example) for

certain values of Γu and Γv. The branch and cut tree grows until memory is exhausted. In

such cases it is possible, for sufficiently small |M|, to solve them by complete enumeration.

The number of feasible solutions is 2|M| − 1. For any given value of y the corresponding

xsij values may be computed by solving |S| × |M| routing problems. Once this is done,

both x and y are known so the formulation no longer has any integer variables but instead

reduces to a linear program of the form

max
U×V

∑
s∈S

∑
(i,j)∈A

[
usKsRij + vijN

sQij + wsijK
sQij

]
subject to ∑

(i,j)∈A

vij ≤ Γv∑
s∈S

us ≤ Γu

wsij ≤ vij ∀(i, j) ∈ A, s ∈ S

wsij ≤ us ∀(i, j) ∈ A, s ∈ S

us ≤ 1 ∀s ∈ S

vij ≤ 1 (i, j) ∈ A

u, v, w ≥ 0

The problem may then be solved by full enumeration using a simple algorithm:

Step 1: Solve the |S| × |M| routing problems to determine the optimal routes from the

set of waste origin points {o(s) : s ∈ S} to the set of possible destinations M, and

cache the resulting paths in the set H.

Step 2: For each possible value of y

[a.] For each shipment s ∈ S, use the cached shortest paths from the set H to

determine the shortest path to any facility (thereby determining the value of x).

[b.] Now that x and y are known, solve the above LP to determine the objective

function value
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Step 3: The optimal solution will of course be the value of y which minimizes the objective

function of the LP

3 Genetic Algorithm

For large problems, neither using CPLEX to solve the MILP formulation nor complete

enumeration will be practical. Many location problems are NP-hard and therefore require

some sort of heuristic approach for large instances. Genetic algorithms have long been

used for solving location problems. See Jaramillo et al. (2002) for some discussion of the

use of genetic algorithms for location problems. In our case, the genetic algorithm is a

natural choice because y, our vector of decision variables is easily encoded into a binary

vector where essentially every possible vector corresponds to a feasible solution. (If we use

as our genome the subset of y defined as {yi : i ∈ M} then the only infeasible solution

which may be coded for by the genome is the trivial case of the vector of zeros.) For

example, if we have 10 candidate locations ( |M| = 10 ), and a feasible solution can be

coded as

1 0 0 1 0 1 0 0 0 1

when locating 4 facilities are optimal and their locations are first, fourth, sixth, and tenth

candidates; ‘1’ means that the candidate is chosen, and ‘0’ means not. In the genetic

algorithm, we will consider variations, through mutation and crossover, of such a coded

solution. The total number as well as the location of ‘1’-genes may change.

3.1 Basic Structure of the Algorithm

We will use a simple structure for the genetic algorithm, as follows:

Step 0: Create an initial population of n individuals by generating random binary strings.

Step 1: Members of the current population reproduce using a “crossover” method.

Step 2: Members undergo spontaneous “mutation” (each bit in the genome of an indi-

vidual flips with given probability).

Step 3: The objective function value (fitness) is calculated for each member of the pop-

ulation.

Step 4: If the desired number of generations has elapsed, stop. The fittest individual in

the current generation is the best solution found. Otherwise cull all but the n fittest

individuals from the population and return to step 1.

14



Certain parameters such as the number of individuals in the population, the number

of generations to run the algorithm and the probability of mutation may be adjusted so

as to improve the likelihood of getting a good solution quickly.

3.2 Calculating the Objective Function Value

When using a genetic algorithm, we need to be able to calculate the fitness of a given

individual. In this case, given the vector y (i.e. where waste processing facilities are

located), calculate the objective function of the robust optimization problem

ZR = w1

∑
i∈M

Fiyi + w2

∑
(i,j)∈A

Lijx
s
ij(y) + w3

∑
(i,j)∈A

∑
s∈S

xsij(y)N sRij

+ w3 max
u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij(y) [N sQijvij +KsRiju
s +KsQiju

svij ]

To solve this, we must first solve the | S | × | M | shortest-path problems to compute

the cost of transporting waste from each origin point to each possible destination, as we

did when doing full enumeration. Although this may be computationally expensive if S,

M and N are large, it need be done only once if we cache the results. This information

may be used to quickly determine the xsij(y) values for any given y. Once this is done, the

terms
∑

i∈M yiFi,
∑

(i,j)∈A Lijx
s
ij(y) and

∑
(i,j)∈A

∑
s∈S x

s
ij(y)N sRij reduce to constants

and what remains is the quadratic problem

max
u∈U ,v∈V

∑
(i,j)∈A

∑
s∈S

xsij(y) [N sQijvij +KsRiju
s +KsQiju

svij ]

Which although it is quadratic is much smaller than the corresponding instance of

the mixed-integer linear problem from Section 2.2.3, and may be solved by CPLEX even

when |S| and |A| are fairly large. (It could be linearized by the method used in Section

2.2.2, but in our experience this was not necessary; CPLEX solved even fairly large-size

examples of this quadratic problem without difficulty.)

4 Numerical Experiments

We solved the robust and nominal problems for examples of size |N | = 50, 90, 200 and

1000. The 50 and 90-node problem use subsets of the road network for the Albany, New

York area (shown in Figure 1), and the 200 and 1000-node examples use subsets of the

road network in San Joaquin County, California. The three smaller instances were solvable

with CPLEX, but the 1000-node problem was too large for CPLEX and was solved by

15



the genetic algorithm. We assumed (w1, w2, w3) = (1, 0, 1). In a computer running 64-

bit Windows 7 with 3.10 GHz CPU and 6 GB RAM and MATLAB R2010b, the full

enumeration took 2,771 seconds, while the genetic algorithm took 975 seconds until to run

50 generations for the 90-node Albany network with |S| = 10 and |M| = 10. However, the

best solution found was found after only six generations. Of the total time, 6.84 seconds

were used to compute and cache the shortest-paths.
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Figure 1: Albany, New York area road network. From Kwon et al. (2013)

4.1 Results

The robust and nominal problems were solved. The resulting solutions were then com-

pared to see how well they performed over a sample of scenarios (sampled from uniform

distributions) from the uncertainty set U × V. The results for the comparison for the Al-

bany, New York area problem are shown in Figure 2. (For this example the values Γu = 4

and Γv = 18 were used.) We see that the nominal and robust solutions perform almost

identically in a simulation with 10,000 samples. Table 2 shows worst case costs for the
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Performance of Nominal and Robust Solutions

Cost

F
re

q
u
e

n
c
y

 

 

Nominal

Robust

Figure 2: The performance of robust and nominal solutions over a random sample from the
uncertainty set U × V for a 90-node problem (Albany, New York area). For this example
the values Γu = 4 and Γv = 18 were used.

Table 1: Statistics for the Experiments

Values for Figure 2 Values for Figure 5 Values for Figure 6

norminal robust norminal robust norminal robust

mean 748,916 746,089 3,855,337 3,771,625 2,544,805 2,256,858
variance 5.886× 1010 5.539× 1010 1.800× 1013 1.705× 1013 5.445× 1011 5.371× 1011

min 384,200 393,990 384,200 393,990 754,090 689,393
max 2,304,795 2,514,635 33,351,098 30,742,916 5,263,779 5,002,351

nominal and robust solutions for a variety of values of Γu and Γv. The robust solution

outperforms the nominal solution more often than not, but not always. Theoretically, the

robust solution must always outperform the nominal solution (Table 3), but in simulations

the sampled cases may not include the theoretical worst case. For example, see the case

with Γu = 3 and Γv = 10 in Table 2. The results reflect the unlikely but high costs events

of arc exposure risk. For example, with Γu = 2 and Γv = 8 the robust solution had an

anomalously high worst-case cost. Some statistics from the numerical simulations are pro-

vided in Table 1. Another thing we notice here is the predictable nature of u-uncertainty

as opposed to v-uncertainty. When Γv = 0 the robust solution never has poorer worst

case performance than the nominal solution. This is because u-uncertainty always impacts

both the nominal and robust solutions. This is not true for v-uncertainty; the nominal

and robust solutions use different sets of arcs, so one solution may be impacted when the

other is not.
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When we try the same experiment but with much wider uncertainty intervals for

exposure risk, we see that again the performance graphs for the nominal and robust

solutions are similar to each other (see Figure 5). However here the nominal problem has

a higher worse case cost, 8.5% higher than that of the robust problem. Note also that

the curves are shaped differently. This is because with smaller exposure risk uncertainty,

traffic volume uncertainty dominated. When exposure risk uncertainty is made much

larger, its effect dominates the resulting costs. Exposure risk uncertainty is an avoidable

uncertainty because it affects arcs which may or may not be used by the solution. Traffic

volume uncertainty is an unavoidable uncertainty because all hazardous waste must be

shipped.

This is apparent in Figure 3, where we plot the percentage comparison between the

nominal and robust solutions based on the data in Table 2. After evaluating 10,000 samples

for each solution, we first compute the percentage differences of the cost function values

of the nominal and robust solution. In Figure 3(a), we plot the average of such percentage

differences for each Γu-value, and in Figure 3(b) for each Γv-value. We observe that as

Γu becomes bigger and unavoidable uncertainty dominates, the robust solutions perform

better on average (about 2% better when Γu = 10), and the trend is consistent. However,

in Figure 3(b) we do not observe any consistent trend with increases of Γv. Similarly,

in Figure 4, we compare the percentage differences of the (simulated) worst-case costs.

As expected, for larger Γu and Γv, the robust solutions perform better, although we do

not observe any significant trend in either case. The chaotic appearance of the graphs in

Figure 4 may be explained by the fact that very bad performance is an extremely rare

event (as illustrated by the very long tails in Figures 2 and 5), so even a fairly large sample

(10,000 for each Γu,Γv combination) is insufficient to make the resulting graph smooth.

By contrast, the results of the comparison for a 200-node problem with larger Γu

and Γv values are seen in Figure 6. The robust solution clearly outperforms the nominal

solution. This is achieved by building additional facilities. The additional cost is more

than compensated for by the resulting decrease in the large exposure risk resulting from

high Γ values. Maps of the facilities selected and routes chosen for the nominal and robust

problems are shown in Figures 7 and 8 respectively.

The performance of the genetic algorithm in solving a 1000-node problem is shown in

Figure 9. The vertical axis shows (on a logarithmic scale) the objective function of the

current best solution, plotted for a run of 100 generations.

The objective function increases in a smooth, predictable way as Γu or Γv increase (as

shown in Figure 10). This should not be surprising, as increasing the budget of uncertainty

can never decrease the objective function of the robust problem, which means that ZR

will be a monotonically increasing function of both Γu and Γv. It is interesting however
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(b) Γv, Uncertainty in Accident Risk

Figure 3: Percentage Comparison of the Mean Performances of the Nominal and Robust
Solutions, from Table 2 with 10,000 samples
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Figure 4: Percentage Comparison of the Worst-Case Performances of the Nominal and
Robust Solutions, from Table 2 with 10,000 samples
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Performance of Nominal and Robust Solutions
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Figure 5: The performance of robust and nominal solutions over a random sample from the
uncertainty set U × V for a 90-node problem (Albany, New York area). For this example
the values Γu = 4 and Γv = 18 were used (the same as for the previous example), but the
width of the exposure risk uncertainty was 20 times higher.
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Figure 6: The performance of robust and nominal solutions over a random sample from
the uncertainty set U × V for a 200-node problem. For this example the values Γu = 5
and Γv = 300 were used.
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Hazmat Network (Nominal Solution)

Figure 7: The squares are sites chosen for facilites. The triangles show the origin points
of waste shipments. The lines indicate the resulting paths along which waste is shipped.

Hazmat Network (Robust Solution)

Figure 8: The squares are sites chosen for facilites. The triangles show the origin points
of waste shipments. The lines indicate the resulting paths along which waste is shipped.
Note how more facilities are built than for the nominal solution, which causes the number
of arcs impacted to be reduced.
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Performance of Genetic Algorithm

Figure 9: This figure shows the performance of the genetic algorithm on a 1000-node, 2254
arc problem. The algorithm converged on a solution after approximately 80 generations.
The time to run 100 generations was 7 hours 36 minutes.

to note that the optimal solution varies in irregular and unpredictable way. Figure 11

along with Table 4 illustrate which feasible solution was optimal for a 90-node Albany,

New York area problem when Γu and Γv varied.

5 Concluding Remarks

For low levels of uncertainty (small uncertainty interval widths), we see that robust and

nominal solutions preform similarly. For higher levels of uncertainty, the robust solution

generates superior results by spending more money (building more facilities, or building

them in expensive but efficient locations). This may be seen as a result of risk averseness.

We also note the contrast between avoidable and unavoidable uncertainty. Here arc

risk uncertainty was an avoidable type of uncertainty, and shipment volume uncertainty an

unavoidable type. As before, we saw that in the presence of substantial avoidable uncer-

tainty robust optimization generated results that were typically superior to the nominal

solution. However, when most of the uncertainty was of the unavoidable type robust

optimization did not prove as valuable.

There are a number of possible extensions to our model. A natural extension of the

problem would be to have capacitated waste processing sites. However it is not clear
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Figure 10: The optimal solution value increases in a smooth fashion as either Γu or Γv
increases. The problem is the 90-node Albany, New York area problem.

solution key indices of locations used in solution

A 2,10,41
B 46,51,78
C 2,10,68,78
D 2,10,68
E 2,10,51,78
F 2,10,51
G 2,40,46,51,78
H 10,51,78
I 2,10,63,78
J 2,46,51,78

Table 4: For each optimal solution in Figure 11, which nodes were used as hazardous
waste facilities.
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Figure 11: The optimal solution may change in irregular fashion as Γu and Γv vary. The
nominal solution “F” is of course optimal when Γu = Γv = 0. The problem is the 90-node
Albany, New York area problem. See Table 4 for the nodes contained in each solution
A,B,. . .,J.
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how such constraints could be integrated into our model given that we assume that each

shipper makes his own choice of which facility to use so as to minimize his own cost.

Much of the existing literature deals with multiple waste types. If we assume that each

waste type may be processed by exactly one type of facility, problems with multiple waste

types are separable by type of facility and remains equivalent to the foregoing. If some

waste types may be processed by multiple types of facility, it may be necessary to formulate

a larger and more complex model with additional constraints to ensure that each waste

type is processed by a compatible facility. A similar complicating generalization would be

to have both processing and disposal sites as in the model of Alumur and Kara (2007).
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Appendix

A Karush Kuhn-Tucker Conditions for the Shortest Path

Problem

In order to convert the two-level problem into a single level optimization problem, we want

to be able to replace the inner minimization (shortest path) problem with an equivalent

set of constraints. As we recall, the inner shortest path problem for shipment s was

min
xs

∑
(i,j)∈A

Lijx
s
ij

subject to

∑
(i,k)∈A

xsik −
∑

(k,i)∈A

xski


= +1 i = o(s)

≥ −yi i ∈M

= 0 otherwise

∀i ∈ N

− xsij ≤ 0 ∀(i, j) ∈ A

which we put into the standard g(x) ≤ 0, h(x) = 0 form:

−
∑

(i,k)∈A

xsik +
∑

(k,i)∈A

xski − yi ≤ 0 ∀i ∈M

−xsij ≤ 0 ∀(i, j) ∈ A

−
∑

(o(s),k)∈A

xso(s),k +
∑

(k,o(s))∈A

xsk,o(s) + 1 = 0

−
∑

(i,k)∈A

xsik +
∑

(k,i)∈A

xski = 0 ∀i ∈ N , i 6= o(s), i /∈M

The corresponding KKT conditions are, first, stationarity

Lij − ζsi + ζsj − φsij = 0 ∀(i, j) ∈ A

then complementary slackness
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φsijx
s
ij = 0 ∀(i, j) ∈ A(

−
∑

(i,k)∈A

xsik +
∑

(k,i)∈A

xski − yi
)
ζi = 0 ∀i =M

and finally dual feasibility

φsij ≥ 0 ∀(i, j) ∈ A

ζsi ≥ 0 ∀i ∈M
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