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Abstract

We study a discrete facility location problem on a network, where the locating firm

acts as the leader and other competitors as the followers in a Stackelberg-Cournot-Nash

game. To maximize expected profits the locating firm must solve a mixed-integer prob-

lem with equilibrium constraints. Finding an optimal solution is hard for large problems,

and full-enumeration approaches have been proposed in the literature for similar prob-

lem instances. We present a heuristic solution procedure based on simulated annealing.

Computational results are reported.

Keywords: Location Analysis; Stackelberg-Cournot-Nash Equilibrium; Game Theory;

Variational Inequality; Simulated Annealing

1 Introduction

The choice of locations for manufacturing facilities is an important strategic decision. Such

choices involve large expenditures of capital and are difficult and expensive to change. A poor

choice will involve significant negative consequences as the manufacturer either suffers the

expense of relocating a facility or else lives with ongoing disadvantages brought about by the

suboptimal location of that facility. Because of the importance of the problem, it has been
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extensively studied and the associated literature is vast. A good overall survey is Hale and

Moberg (2003). A significant portion of the literature is concerned with competitive facility

location, i.e. locating facilities so as to maximize profits or market share in a competitive

situation. Some relevant research articles and surveys of the competitive facility location

literature are Friesz et al. (1988), Eiselt et al. (1993), Serra and ReVelle (1999), Plastria

(2001), Plastria and Vanhaverbeke (2007), Santos-Peñate et al. (2007), and most recently

Kress and Pesch (2011). However much of the literature dealing with facility location subject

to competition deals with the location of retail or similar facilities where customers are

distributed in some way and will choose a conveniently located facility following some rule

e.g. a “gravity model”. (A review of such literature is found in Dobson and Kamarkar, 1985.)

Models appropriate to the location of manufacturing facilities are necessarily different. Rather

than placing retail or similar facilities in proximity to demand points, so as to maximize

utilization or market share (essentially competing on the basis of proximity), the firm places

its manufacturing facilities so as to be able to compete on the basis of cost. That is, facilities

are located so as to enable the firm to deliver its products to market as cheaply as possible, by

controlling both manufacturing costs, which may vary from candidate location to candidate

location, and transportation costs from the manufacturing facility to the markets it serves.

Another factor which must be taken into account is market competition. If the market

for a particular commodity is controlled by a small number of competing firms (oligopoly)

then a firm must take into account the reactions of its competitors to any planned move.

(In a monopolistic situation there is no competition to consider, and where the number

of competitors is sufficiently large the actions of competitors do not need to be taken into

account.) A firm must expect that its competitors will react to whatever it does (in such a way

as to maximize their own profits), and by their actions change market conditions, especially

prices, by increasing or decreasing the supply of goods available at different markets. In order

to evaluate a potential strategy, a firm must calculate how the competition will react to that

strategy. This calculation may be done by computing an equilibrium, termed a “Cournot-

Nash-Stackelberg” equilibrium (Sherali et al., 1983). The firm choosing a site for a new
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facility (referred to as the “Stackelberg player”) first makes its choice of sites for establishing

manufacturing facilities, what production levels to maintain at each facility and where to sell

the materials so produced. Its competitors (“Cournot players”) react, maximizing their own

profits, until an equilibrium is reached. In order to find the best possible solution to the

manufacturing facility location problem, a firm must therefore solve an optimization problem

which incorporates a set of equilibrium constraints to model the response by the competition.

See Miller et al. (1996) for more discussion on this topic.

The basic structure of the manufacturing facility location problem is therefore to choose

locations for manufacturing facilities such that the firm’s profits are maximized at the re-

sulting market equilibrium. The literature on the subject of market equilibrium modeling

and its computation and analysis is fairly substantial. Among many research papers on the

oligopolistic competition models since Cournot (1838), we want to mention two particular

papers. Miller et al. (1991) considered a variational inequality formulation of an oligopolis-

tic competition where firms compete with production quantities and and shipping amounts

between markets and production facilities. Miller et al. (1991) assumed that the market

price is determined by an inverse demand function, as in Cournot (1838). Later, Friesz et al.

(2006) extended the model to consider dynamic environments and formulated the equilibrium

problem as a differential variational inequality.

On the other hand, when we consider spatially separated markets for a single product,

there is another approach to determine the market price of the product. It is based on

the spatial price equilibrium models of Samuelson (1952) and Takayama and Judge (1971).

Variational inequalities, or some other equivalent forms, are typically used for modeling

the oligopolistic equilibrium. Among many approaches that use variational inequalities for

analysis and computation, there are Dafermos and Nagurney (1984), Harker (1986), and

Nagurney (1987) in this category. The existence and uniqueness results were provided for the

variational inequality models, and the computational results are also provided. See Nagurney

(1998) for review.

The relevant literature that considers location decisions in the form of Stackelberg-
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Cournot-Nash games begins with Sherali et al. (1983), who considers firms that compete

on production quantities. They extended the classic Cournot games by introducing a Stack-

elberg firm who determines the production quantity by explicitly considering the other firms

reaction. In their model, the market price was determined by an inverse demand function

based on the total market production quantity. The firm who introduces a new facility is

regarded as a leader, and all other market oligopolists are followers; therefore, Stackelberg-

Cournot-Nash games are often called leader-follower games.

In the line of the location decision model of Sherali et al. (1983) and the spatial model

of Miller et al. (1991), Tobin et al. (1995) consider a Stackelberg-Cournot-Nash game where

a leader firm introduces a new facility and other firms compete with production quantities

and shipping decisions to markets. Later, Miller et al. (2007) further extends to consider

a multi-period decision making problem. All three papers modeled the market prices using

inverse demand functions.

This category of problems is of this paper’s interest. In particular, we will use the modeling

framework of Tobin et al. (1995), and propose a heuristic algorithm based on simulated

annealing. While the underlying oligopoly models are well studied both analytically and

computationally, the location decision problems are generally very hard to solve. Usually,

such a problem is modeled as a mathematical program with equilibrium constraints (MPEC)

(Luo et al., 1996). Both Tobin et al. (1995) and Miller et al. (2007) used a full enumeration

of all possible locations to determine an optimal solution that maximizes the leader firm’s

profit resulting from the competition. In this paper, we will investigate if an optimal solution

could be obtained more efficiently.

There are also location-problem counterparts for the spatial price equilibrium models.

Tobin and Friesz (1986) built a location decision making problem based on the spatial price

equilibrium of Friesz et al. (1984). Friesz et al. (1989) provided existence results, and Miller

et al. (1991) proposed a heuristic method that approximate the spatial price equilibrium

processes, which uses sensitivity analysis of the market equilibrium to determine an optimal

location. The method requires solving a nonlinear integer programming problem in each
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Table 1: A Summary of Relevant Models in the Literature

Market Price Model

Competition Model Inverse Demand Spatial Price Equilibrium

Cournot-Nash
(quantity)

Cournot (1838),
Harker (1984)

N/A

Cournot-Nash
(quantity, shipping)

Harker (1986),
Miller et al. (1991),
Friesz et al. (2006)†

Dafermos and Nagurney (1984),
Friesz et al. (1984),
Harker (1986),
Nagurney (1987)

Stackelberg-Cournot-Nash
(quantity)

Sherali et al. (1983) N/A

Stackelberg-Cournot-Nash
(quantity, shipping, location)

Tobin et al. (1995),
Miller et al. (2007)†,
this paper

Tobin and Friesz (1986),
Friesz et al. (1989),
Miller et al. (1992)

† dynamic models

main iteration.

A summary of the above mentioned relevant models is provided in Table 1. As we have

already discussed above, we consider two factors. The first column in the table represents

research that uses inverse demand functions to model market prices depending on the total

supply to the markets, while the second column represents research that uses spatial price

equilibrium models using the Takayama and Judge (1971) approach. The first row is the

Cournot-Nash model by Cournot (1838), and the second row provides Cournot-Nash models

with spatially separated markets and shipping decisions. The third row is the Stakelberg-

Cournot-Nash extension of Cournot (1838), and the last row provides those including shipping

decisions.

It is worth mentioning Konur and Geunes (2012) that consider a location game between

firms. While only one firm decides a location all in the above-mentioned research, all compet-

ing firms decide their own locations considering the resulting oligopolistic competition. Konur

and Geunes (2012) consider spatially separated markets and shipping between markets and

facilities in the presence of traffic congestion. They used inverse demand functions to model

the market prices. Their model is not a Stackelberg model, as there is no leader. However,
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to find an equilibrium, they used a two-stage approach, where the first stage determines a lo-

cation equilibrium and the second stage determines a production-shipping equilibrium. This

is structurally similar to the Stackelberg-Cournot-Nash models in Table 1 in the sense that,

for any given first stage result, i.e. locations, Konur and Geunes (2012) use a variational

inequality model to determine the second stage solution. To determine the best response for

the first stage location decision, they use a full enumeration for each firm.

As is in Tobin et al. (1995), Miller et al. (2007), and Konur and Geunes (2012), the full

enumeration is a popular choice of methods to find an optimal location to place a new facility.

When the number of all location candidates is small, full enumerations work fine. However,

when there are many location candidates, a full enumeration would be computationally very

heavy, because a variational inequality problem, whose size would be also very large, needs

to be solved for each location candidate. In this paper, we attempt to reduce the number of

variational inequality problems by search the set of locations by simulated annealing.

The remainder of this paper is organized as follows. In Section 2, we describe the

Stackelberg-Cournot-Nash model we consider for locating a facility in the form of a mixed

integer program with equilibrium constraints, where the lower-level equilibrium problem is

formulated as a variational inequality. In Section 3, we first consider a branch-and-bound

method for the KKT conditions of the lower-level equilibrium problem and present a full

enumeration approach using a fixed-point algorithm for solving the lower-level variational

inequality problem. In Section 4, we propose a simulated annealing algorithm and test it in

a test network. In Section 5, we conclude this paper with some remarks.

2 The Stackelberg-Cournot-Nash Model

Let us begin by more formally describing the facility location problem described above.

Suppose that some set F of firms operate manufacturing facilities located on a network

G = (N ,A), where they manufacture some product which they sell in competition with one

another in some set of markets M ⊆ N . Each firm must pay some per-unit manufacturing

cost, as well as a transportation cost for each unit which is proportional to the distance that

6



the unit is shipped from the facility where it is manufactured to the market where it is sold.

The market price in each market varies inversely with the amount of product offered for sale

in that market. Each firm seeks independently to maximize its own profit subject to these

constraints. We will use the following definitions of mathematical notations:

• Nf is the set of nodes at which firm f has a manufacturing facility.

• qfi is the output of firm f ∈ F at its facility at i ∈ Nf .

• Qf
i is the maximum production capacity of firm f at its facility at i.

• V f
i (qfi ) is the total cost of production for firm f at node i.

• sfij is the amount shipped by firm f from its facility at node i to the market at node j.

• cfi is the allocation of the output of firm f to the market at node i.

• πi(ci) is the price function of the market at node i, where ci =
∑

f∈F c
f
i .

• Wf is the set of OD pairs over which firm f ships goods.

• rij is the freight rate (tariff) charged per unit of flow sij for OD pair (i, j) ∈ Wf .

2.1 The Problems of the Cournot Firms

Following the previous models, such as Tobin et al. (1995) and Miller et al. (1991), we

assume that (1) πi(·) is monotonically decreasing; (2) the revenue function πj(cj)c
f
j is a

concave function of cfj ; and (3) V f
j (·) is convex and monotonically increasing. In particular,

we assume a simple linear inverse-demand function for each market j of the form

πj(cj) = aj − bj

∑
f∈F

cfj

 (1)

and linear production costs

V f
i (qfi ) = Kf

i + dfi q
f
i (2)

where the values a, b, d and K are constants.
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Then firm f ∈ F ’s problem is:

max Jf (cf , qf , sf ; c−f ) =
∑
j∈M

πj(cj)c
f
j −

∑
i∈Nf

V f
i (qfi )−

∑
(i,j)∈Wf

rijs
f
ij (3)

subject to

qfi −
∑
j∈M

sfij ≥ 0 ∀i ∈ Nf (4)

∑
i∈Nf

sfij − c
f
j ≥ 0 ∀j ∈M (5)

qfi ≤ Q
f
i ∀i ∈ Nf (6)

qfi ≥ 0 ∀i ∈ Nf (7)

cfj ≥ 0 ∀j ∈M (8)

sfij ≥ 0 ∀i ∈ Nf , j ∈M (9)

where constraints (4) ensure that firm f cannot ship from any site more than it manufactures

there, and constraints (5) ensure that firm f cannot sell at any market more than it ships

there. The result is a market equilibrium where each firm’s manufacturing and distribution

decisions are such that any deviation from them would result in decreased profits. We used

the notation c−f to denote the vector of allocation amounts to the markets of all other firms

than f .

Before we proceed we define vector notations to simplify the mathematical expressions.

We first denote the strategy vector of firm f by xf = (cf , qf , sf ) where cf = (cfj )j∈M,

qf = (qfi )i∈Nf
, and sf = (sfij)(i,j)∈Wf

. We also define the feasible set of the firm f :

Ωf = {xf : (4) - (9) hold}

We denote the strategies of all other firms than f by x−f .

Under the assumptions on the functions, we can show that the objective function (3) is

concave for any given c−f (Facchinei and Pang, 2003, Section 1.4.3). Therefore, the first-order
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optimality condition for firm f ’s problem in variational inequality form is to find xf ∈ Ωf

such that

[∇Jf (xf )]T (zf − xf ) ≤ 0 ∀zf ∈ Ωf

where zf is a dummy vector of the same dimensionality as xf .

Concatenating the above variational inequalities for all firm f ∈ F , we obtain the following

variational inequality formulation of the Nash equilibrium, as given by various authors, e.g.

Harker and Pang (1990); Facchinei and Pang (2003): to find x ∈ Ω such that

∑
f∈F

[∇Jf (xf )]T (zf − xf ) ≤ 0 ∀z ∈ Ω

where x = (xf )f∈F and Ω =
∏

f∈F Ωf . For more details of this equilibrium, including the

existence and uniqueness results, see Tobin et al. (1995).

2.2 The Problem of the Stackelberg Firm

In this context, firm g ∈ F wishes to build an additional manufacturing facility. In order

to determine the best possible location for the new facility (the choice which will maximize

profits), it is necessary to find the choice which will result in the greatest profit for firm g at

the subsequent market equilibrium. We define the additional binary variables

yj =

 1 if firm g builds its new facility at location j or already has a facility there

0 otherwise

using Fj to denote the fixed cost for firm g to build a new manufacturing facility at location

j. In the case where firm g already has a facility at location j, assume Fj = 0. Then, because

we are considering all possible locations as potential manufacturing sites for g, we may say

that Ng = N , that Qg
i and V g

i are defined for all i ∈ N and that Ωg will take the form

Ωg(y) = {xg : (10)− (15) hold}
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where (10)-(15) are defined as follows (identically to (4) - (9) except for the fact that constraint

(12) must ensure that firm g does not manufacture at any location where it does not have a

facility):

qgi −
∑
j∈M

sgij ≥ 0 ∀i ∈ N (10)

∑
i∈N

sgij − c
g
j ≥ 0 ∀j ∈M (11)

qgi ≤ Q
g
i yi ∀i ∈ N (12)

qgi ≥ 0 ∀i ∈ Nf (13)

cgj ≥ 0 ∀j ∈M (14)

sgij ≥ 0 ∀i ∈ Nf , j ∈M (15)

Then firm g’s problem becomes

maxZg(xg, y) =

∑
j∈M

πj(cj)c
g
j −

∑
i∈N

V g
i (qgi )−

∑
(i,j)∈Wg

rijs
g
ij −

∑
i∈N

yiF
g
i

 (16)

= Jg(xg;x−g)−
∑
i∈N

yiF
g
i

subject to

∑
f∈F

[∇Jf (xf )]T (zf − xf ) ≤ 0 ∀z ∈ Ω(y) (17)

x ∈ Ω(y) (18)

yi ∈ {0, 1} ∀i ∈ N (19)∑
i∈N

yi = 1 (20)

which is a mixed-integer program with equilibrium constraints (17), where we used the fol-
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lowing definition

Ω(y) = Ωg(y)×
∏

f∈F ,f 6=g

Ωf

In the next section, we discuss methods to solve this problem.

3 Numerical Methods

A discretely-constrained mathematical program with equilibrium constraints is difficult to

solve, due to convexity issues as well as the discrete constraints. Various approaches have

been attempted; a brief review of these is given in Gabriel et al. (2010). We will begin by

attempting one of these, namely branch and bound.

3.1 Branch and Bound

The variational inequality constraint (17) may be written as follows: to find x ∈ Ω such that

∑
f∈F

[∇Jf (xf )]T zf ≤
∑
f∈F

[∇Jf (xf )]Txf ∀z ∈ Ω(y) (21)

Suppose that we have a solution x ∈ Ω on hand. Then, the variational inequality problem

(21) may be written of the following mathematical optimization problem form:

max
z

∑
f∈F

[∇Jf (xf )]T zf (22)

subject to

hf (zf ; y) ≤ 0 ∀f ∈ F (23)

where we expressed the inequalities in the set Ωf by a vector of linear functions hf (·; y) for

each f ∈ F and any y. For the given x, (22) is a linear programming problem with the

decision variable z. However, we know that a solution of (22) is z∗ = x. Therefore for z∗ = x
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to be optimal to (22), x needs to satisfy the following Karush-Kuhn-Tucker conditions:

∇Jf (xf ;x−f ) + (µf )T∇hf (xf ; y) = 0 (24)

(µf )Thf (xf ; y) = 0 (25)

µf ≥ 0 (26)

for all f ∈ F , where µf is a vector of dual variables. This type of analysis is well explained

in Friesz (2010). Note that the problem (22) is not intended to be used in any solution

algorithm, but devised to help the derivation of the KKT conditions.

The resulting problem that is equivalent to the problem (16) is of the form:

maxZg(xg, y) = Jg(xg;x−g)−
∑
i∈N

yiF
g
i (27)

subject to

∇Jf (xf ;x−f ) + (µf )T∇hf (xf ; y) = 0 ∀f ∈ F (28)

(µf )Thf (xf ; y) = 0 ∀f ∈ F (29)

µf ≥ 0 ∀f ∈ F (30)

hf (xf ; y) ≤ 0 ∀f ∈ F (31)

yi ∈ {0, 1} ∀i ∈ N (32)∑
i∈N

yi = 1 (33)

which may then be solved by a branch and bound approach. This problem has two challenging

components: first is the binary variable y, and second is the complementarity condition

(29). During the branch-and-bound processes, we relax constraints (32), replacing them

with linear constraints of the form 0 ≤ yi ≤ 1, as well as the complementarity constraints

(29). For a given node of the branch and bound tree, we solve the comparatively simple

relaxed subproblem. The subproblem corresponding to a given node of the tree will either
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be infeasible, feasible to the unrelaxed problem, or feasible to the relaxed subproblem but

violating some of the relaxed constraints. In the latter case, we may branch further by adding

a constraint to enforce either the binarity of yi for some i or the complementarity condition

(29) for some f . At each iteration, we find the two leaf nodes which violate the relaxed

constraints most strongly, i.e. the leaf node with the closest yi to 1
2 , and the leaf node with

the largest
∣∣∣hfkµfk∣∣∣, where the subscript k is used to denote k-th element of each vector. We

then branch on one of these two nodes (choosing randomly between the two). We continue

branching until fathoming due to bound, infeasibility or optimality. See Edmunds and Bard

(1992) for a more complete description of this procedure.

The disadvantage of the branch-and-bound method is that it becomes computationally

intractable even for relatively small problem sizes. Furthermore, the “large” problems con-

sidered in Edmunds and Bard (1992) were still rather small ( | h |= 10, whereas even a

small problem of the sort we are considering will have hundreds if not thousands of such

constraints). This leads us to consider an alternative solution procedure.

3.2 Full Enumeration Using Fixed-Point Iteration

A simpler approach is to do a full enumeration of the possible facility location choices, as

similarly done in Tobin et al. (1995), Miller et al. (2007), and Konur and Geunes (2012).

This will require us to solve for each possible value of y a variational inequality problem: to

find x ∈ Ω

∑
f∈F

[∇Jf (xf )]T (zf − xf ) ≤ 0 ∀z ∈ Ω(y) (34)

and call the solution x∗. Then we compare Zg(x∗, y) = Jg(x∗) −
∑

i∈N yiF
g
i to identify the

optimal location decision y∗ that achieves the maximum Zg(x∗, y∗).

The variational inequality problem (34) may be solved by a fixed-point iteration of the

form

xf,(k+1) = PΩf (y)[x
f,(k) + α∇Jf (x(k))]
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problem size Branch and Bound Full Enumeration

(number of runtime nodes solution runtime
locations) (seconds) explored quality (seconds)

5 19.56 1804 0.9899 7.61
10 49.17 3102 0.9883 15.98
20 172.32 5806 0.9936 38.49
50 3303.03 15459 0.2046 176.52
100 ∞ - - 1437.54

Table 2: Comparison of performance of branch and bound with full enumeration.

for all f ∈ F for some suitable step sizes α > 0, where PΩ is the operator of minimum-norm

projection onto the feasible region Ω, i.e.

PΩ(xk) = arg min
x∈Ω

∣∣∣∣∣∣x− xk∣∣∣∣∣∣2
Since we assumed linear inverse demand functions and linear productions costs, we can

in fact build a convex optimization problem that is equivalent to (34) (Facchinei and Pang,

2003, Section 1.4.3). Instead of using the fixed-point iteration, we can use a commercial

optimization solver to solve the equivalent optimization problem. However, we note that the

fixed-point iteration for the variational inequality problem (34) is in fact same as the gradient

projection algorithm for solving the equivalent optimization problem.

3.3 Tests on Randomly Generated Networks

The branch-and-bound and full enumeration algorithms were compared for a number of

randomly generated sample problems. To generate problem instances, we first located N

nodes randomly based on uniform distributions on a box-constrained space, and assumed a

complete network, i.e., all nodes are connected to each other. The distance between any two

nodes is measured by the Euclidean distance based on the coordinates of the nodes. We used

MATLAB 2010a on a generic personal computer running Windows 7 with 3.10GHz Intel Core

i5-2400 CPU, and 4GB RAM. The all runtimes reported in this paper are based on runs on

this computing environment. For the full enumeration, we used tomlab/qp-minos to solve

14



Nash equilibrium sub-problems in an equivalent optimization form, with margin of 10−6 for

both feasibility and convergence.

For each problem size N , we solved 200 instances, and we report average values in Table

2. The branch and bound solution quality is the average ratio of the best solution found

by branch and bound to that found by full enumeration (i.e. to the optimal solution). The

very poor average solution quality for branch and bound with N = 50 reflects the fact that

on many occasions for N = 50 the branch and bound algorithm terminated due to time

constraints without finding any feasible solution at all. For N = 100 branch and bound was

not attempted due to excessively high running times. The runtimes for the full enumeration

method are reported in Table 2, and they are faster than the branch-and-bound method, in

all problem instances.

4 A Heuristic Search Algorithm by Simulated Annealing

As seen in Table 2, it becomes expensive to solve the problem by full enumeration, even

for fairly modest-sized cases. Therefore it will be useful to find a heuristic which can find a

good quality solution when evaluating a limited number of candidate solutions. Also, as the

cost of evaluating any given candidate solution is relatively low, but the number of candidate

solutions may be large, we would benefit from some way of limiting or directing our search

of the solution space. A number of types of heuristics for limiting exploration of the solution

space exist. One such is genetic algorithms. However, it is unclear how a genetic algorithm

could be adapted to the problem at hand. The obvious genetic encoding for our problem

would be to use the vector y as the genome. For example, since we locate only one new

facility, all genomes for feasible solutions are an equal distance away from each other, which

means that the genetic algorithm can get no purchase on the problem; it is essentially the

same thing as a random search.

Simulated annealing, by contrast, may be more naturally applied to the problem at hand.

Simulated annealing already has a history of use in location problems, see for example Golden

and Skiscim (1986), Murray and Church (1996), Drezner et al. (2002), Arostegui et al. (2006),
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Redondo et al. (2009), and Parvaresh et al. (2013). Simulated annealing requires only a no-

tion of adjacency. The solution space is searched by starting with some arbitrary incumbent

(or perhaps multiple incumbents if a multi-start heuristic is used) and then evaluating ad-

jacent candidates. If some criterion is met, then the candidate solution replaces the current

incumbent. Because any reasonable definition of adjacency may be used, simulated annealing

may therefore be adapted so as to solve our problem.

In our case if we are looking for the optimal site for a single new facility our candidate

solutions have the property that each corresponds to some point in space. Therefore we can

define adjacency for two candidate solutions as some function of the relative positions of the

corresponding locations. If the various sites have truly arbitrary production costs (i.e. costs

vary erratically from site to site and the costs of nearby sites are not strongly correlated) such

a search may not be practical. If costs are “reasonable” enough, the objective function of a

candidate solution will be positively correlated with those of its closest geographical neigh-

bors.1 This may be a tenable assumption especially if transportation costs are a significant

enough portion of total cost, and are directly proportional to the distance between the pro-

duction facility and the market being served. A simulated annealing-based algorithm for our

problem would then be approximately as follows. Given an incumbent solution, choose as our

next candidate solution one of the closest as yet unexamined locations to the incumbent. If

the objective function of the candidate is better than the incumbent, replace the incumbent.

Otherwise replace it probabilistically as determined by a cooling function of the form

c(Zcand, t) = exp

(
t

500 | N |
(Zcand − Zinc)

)

where Zcand is the equilibrium profit to firm g given the candidate solution, Zinc is the

equilibrium profit to firm g given the incumbent solution, and t is the time since the beginning

of the algorithm. The algorithm is thus as follows:

Step 0: Let t ← 1. For each n ∈ N , compute its set of neighbors A(n) as the subset of

1This discussion assumes p = 1 (or that the number of “movable” sites is 1) but the same concept applies
if p > 1 if we assume that two candidate solutions are adjacent if they have p − 1 facilities in common and
that the remaining facility is adjacent in the sense that it would be for p = 1.

16



points in N which are less than some threshold distance from n.

Step 1: Pick i ∈ N at random as the incumbent (choosing from all nodes of N with equal

probability). Solve the corresponding variational inequality (34) to find the resulting

market equilibrium, either using fixed point iteration or a commercial solver for the

equivalent optimization formulation, assuming that firm g’s new facility is placed in

location i, and compute Zinc, the resulting profit for firm g.

Step 2: Pick candidate location j, choosing from all unvisited neighbors of the incumbent

with equal probability. If all neighbors of the incumbent have already been visited,

choose any unvisited location. Evaluate the objective function Zcand.

Step 3: Evaluate the cooling function c(Zcand, t) and choose a random number X ∼ U [0, 1].

If X < c(Zcand, t), make j the incumbent and set Zinc ← Zcand. (Note that this will

always be the case if Zcand > Zinc.)

Step 4: If the desired number of iterations has been reached, terminate. Else t← t+ 1 and

go to step 2.

The optimal average size for A(n) was determined by trial and error, as shown in Figure

1. Figure 2 shows a comparison between full enumeration using a random search of the

solution space and using the simulated annealing heuristic. At first, random search performs

better, in the sense that after examining only a few candidate solutions the best one found

so far is likely to be better. This is because if the simulated annealing procedure happens to

start in a region where candidate locations are poor, it must move gradually to an area with

better performing solutions. Random search is under no such constraint. However, simulated

annealing eventually surpasses random search and almost always finds a good quality solution

after having examined only a fraction of the solution space.

Observing this behavior, we make a simple modification to the heuristic. Rather than

pick a single random starting point for the heuristic, we evaluate several potential starting

points and start at the point with the best objective function value. The results after making

this modification to the procedure are shown in Figure 3. This simulated annealing heuristic
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Figure 1: Comparison of simulated annealing with different neighborhood sizes, with N =
100. The neighbors of node i are defined as being all nodes within some radius of i. The best
results are seen when the radius is chosen so as to make each node have an average of about
5 neighbors.

performs equally well to random search at the beginning (indeed it starts out by doing a

random search), but then proceeds to outperform random search thereafter.

The computational time and the solution quality of simulated annealing depend on when

we terminate the algorithm. When we apply simulated annealing, we cannot use the quality

of best solution found as in the vertical axis of Figures 1–3, since we do not know the

optimal solution a priori. However, in all cases, simulated annealing seems producing a

solution with the optimality gap less than 1%, after it explores about 30% of all location

choices. Therefore, one may use 30% as a guideline for stopping criteria. In this case, the

computational time for simulated annealing would be around 30% of the computational time

of the full enumeration method. For the N = 100 example, it is 30% of 1437.54 seconds,

which is about 431 seconds. The computational environments for simulated annealing were

same as for the full enumeration method, already reported in Section 3.3.
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Figure 2: Comparison of simulated annealing and random search. Shown is the quality of
the best solution found, as a function of the percentage of the solution space yet explored,
with N = 100. Simulated annealing essentially always found optimal or near optimal solution
after exploring about a third of the solution space.
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Figure 3: Simulated annealing with multiple starting points. (Multiple starting points are
evaluated and the procedure is started from the point with the best objective function value.)
Shown is the quality of the best solution found, as a function of the percentage of the solution
space yet explored, with N = 100.
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5 Concluding Remarks

We have presented a heuristic for solving a manufacturing site location problem. Preliminary

results suggest that it is capable of finding good solutions to problems of moderate size

(| N |≈ 100 or somewhat larger). Furthermore, it has the advantage that fairly good quality

solutions are found quickly, so the entire solution space does not necessarily need to be

explored. However it should be noted that it too will have difficulty with larger problems. As

| F | and | M | grow, the projection problem PΩ becomes more expensive and convergence

behavior of the fixed point iteration may deteriorate, making it more difficult to explore the

solution space.

There other possible approaches which could be investigated. One such would be a

modified definition of adjacency in the simulated annealing procedure. In particular, we

could define the n closest points in each of several directions as adjacent, rather than merely

the n closest points over all, as done in the current implementation. Another possibility

would be rather than picking one adjacent node at random to evaluate, a number of adjacent

nodes could be examined, and the most improving one per distance away from the incumbent

would be chosen. Note that this is not simulated annealing but more of a primitive kind of

gradient search.

Possible future extensions may be competitive location problems in consideration of robust

decision-making under uncertainty (Berglund and Kwon, 2013) and multi-echelon supply

chain network involving hubs (Shahabi et al., 2013).
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