A Reinforcement Learning Approach for Rebalancing Electric Vehicle
Sharing Systems

Aigerim Bogyrbayeva', Sungwook Jang’, Ankit Shah!, Young Jae Jang?, Changhyun Kwon'

Abstract— This paper proposes a reinforcement learning
approach for nightly offline rebalancing operations in
free-floating electric vehicle sharing systems (FFEVSS). Due
to sparse demand in a network, FFEVSS require relocation
of electrical vehicles (EVs) to charging stations and demander
nodes, which is typically done by a group of drivers. A shuttle
is used to pick up and drop off drivers throughout the network.
The objective of this study is to solve the shuttle routing
problem to finish the rebalancing work in the minimal time. We
consider a reinforcement learning framework for the problem,
in which a central controller determines the routing policies
of a fleet of multiple shuttles. We deploy a policy gradient
method for training recurrent neural networks and compare the
obtained policy results with heuristic solutions. Our numerical
studies show that unlike the existing solutions in the literature,
the proposed methods allow to solve the general version of
the problem with no restrictions on the urban EV network
structure and charging requirements of EVs. Moreover, the
learned policies offer a wide range of flexibility resulting in
a significant reduction in the time needed to rebalance the
network.

Index Terms—shared mobility, reinforcement learning,
neural combinatorial optimization, vehicle routing

I. INTRODUCTION

The advent of electric vehicles (EVs) and car-sharing
services provides a sustainable option to move people and
goods across dense urban areas. Car sharing services with
EVs have the potential to increase the utilization of resources
and offer a unique opportunity to the urban population in the
form of free-floating EV sharing systems (FFEVSS). With
the FFEVSS, customers no longer need to own a vehicle
and can conveniently pick up/drop off any EV, on-demand,
from the parking lots of designated service areas. However,
there are some critical operational challenges to bring this
on-demand service into the mainstream.

Before the start of the day, an operating company
needs to relocate EVs to the ideal demand locations to
establish supply-demand balance in the system. Furthermore,
to provide a certain level of service, EVs need to be
charged before they can be used by the customers. There
are two major issues: i) there exists a sparse demand
in the service area network and hence it is not trivial
to find the ideal locations to relocate the EVs; ii) there
needs to be an efficient routing plan to drop off the
drivers for picking up the EVs and taking the EVs to the
charging stations for charging, and then pick up the drivers

TDepartment of Industrial and Management Systems Engineering,
University of South Florida, Tampa, Florida, USA, Email: {aigerimb,
ankitshah, chkwon}Qusf.edu

bDepartment of Industrial and Systems Engineering, KAIST, Dacjeon,
South Korea, Email: { jedi829, yjang}@kaist.ac.kr

from their respective locations. It is evident that without
efficient solutions for the above operational challenges, the
sustainable existence of the FFEVSS is uncertain. Therefore,
we propose a decision-making framework designed to solve
the above-mentioned relocation problem of the EVs.

We consider a static, nightly rebalancing problem similar
to [1]-[4], where a group of drivers is used to relocate and
recharge the EVs based on the predicted demand for the next
day, assuming the utilization level of FFEVSS is minimal.
Shuttles are used to support the movements of drivers. In this
setting, rebalancing operations require two key decisions to
be made: i) how to route shuttles to pick up and drop off the
drivers (shuttle routing decision) and ii) where to relocate
each of the EVs (EV relocation decision). In this paper,
focusing on solving the shuttle routing decision problem, we
propose a reinforcement learning approach, in which the EV
relocation decisions are made by a rule-based approach.

The proposed RL approach possesses several advantages,
compared to optimization-based approaches. First, unlike
solutions coming from the static optimization techniques
such as [3,4], which need to be re-solved each time an
input changes, the RL agent learns robust solutions that can
be applied to any input coming from the same distribution
[5]. Second, while static optimization approaches can take
significant time to solve a problem, a trained RL agent can be
invoked to produce quality solutions instantaneously. Third,
many practical considerations can be flexibly incorporated
within the simulator in the training phase.

The shuttle routing to rebalance FFEVSS with its variety
of trade-offs is not a trivial problem. For instance, as depicted
in Figure 1, one may allow or disallow the reuse of charging
stations in the derivation of solutions. The former choice
offers more flexibility, but it also increases the complexity
of exploring solutions. Therefore, the existing methods do
not allow reuse of the charging stations [4]. On the other
hand, such choice results in the opportunity loss. Another
trade-off is depicted in Figure 2, where the first supplier
node has an EV that needs to be recharged while the second
supplier has an EV with a sufficient charging level. Then
one needs to balance between traveling time and waiting
time related to routing a shuttle to supplier nodes. The
complexity of such routing decisions increases with the
network size, its structure and the number of shuttles and
drivers deployed. Hence, it may not be possible to efficiently
explore potential solutions with human-driven heuristics.
With the proven ability of neural networks in recognizing
patterns in graph-based representations, the utilization of a
neural network architecture with the proposed RL approach

8o e _»

e €

Fig. 1: Assign supplier-charger pairs or reuse charger nodes? Ch
and Su denotes charger and supplier nodes respectively.

&) &)
o €9
@9 D

Fig. 2: How to balance traveling time and waiting time trade-off?
De, Ch and Su denotes demander, charger and supplier nodes
respectively.

@) &

will provide better approximations and assist in obtaining
efficient solutions that can be generalized.

In recent years, there has been a surge of studies that
apply reinforcement learning to solve various vehicle routing
problems (VRPs) [6]-[8]. The proposed solution approaches
mainly apply to the traditional VRP settings such as capacity
constraints, time windows and stochastic demand. The
shuttle routing problem, taken under this study, possesses
significant differences with other VRPs. First, in a VRP
setting, demand is independent of the routing decisions.
However, in the shuttle routing problem, locations of drivers
to be picked up are determined by preceding routing
decisions, highlighting a strong interdependence between
demand and routing. Second, unlike VRP, the shuttle routing
problem is characterized by delayed rewards. As shown in
Figure 3, the actual relocations of EVs from a node happen
after the execution of shuttle routing to the node. As a
result, we observe delayed rewards with respect to the shuttle
routing decision only after EVs reach their designated nodes.
Consequently, such differences require a new approach to
finding solutions for the shuttle routing problem.

We consider two settings of rebalancing FFEVSS. In
the first setting, we focus on a single shuttle problem,
where we train a single agent to learn routing policies.
In the second setting, we aim to train a fleet of shuttles
through a single-agent reinforcement learning, where a
central controller is responsible for routing multiple shuttles.
In both cases, we deploy policy gradient methods along
with recurrent neural networks for training. The shuttle
routing problem under both of the above-mentioned settings

a . SR2
EVR,

a1 : SRy @\

ap : SRo /\
@ @ EVRo 2%

Fig. 3: State transitions: SR; - shuttle routing decisions, EVR; -
EV relocation decisions, a; - selected action

possesses significant challenges that prohibit the direct use
of the existing solution methods. For instance, in routing a
single shuttle, we must train an agent not only to find efficient
routes, but at the same time maintain the feasibility of the
solutions related to the precedence of the visiting nodes. As
for routing the fleet of shuttles, in the training, we must
promote learning policies to route multiple shuttles that will
contribute to a common goal.

The main contributions of this study are as follows. First,
to the best of our knowledge, this study is the first to
present an RL-based approach for handling multiple vehicles
explicitly in the context of VRPs, while focusing on the
shuttle routing problem for rebalancing the FFEVSS. Second,
within the RL framework, we propose the utilization of
deep neural network architecture to process the complex and
high dimensional observations from an urban service area
network to help train the RL agent in its decision-making.
In particular, we adopt sequence to sequence models with
attention mechanism to fit the unique challenges of the
rebalancing FFEVSS. Third, we present a novel training
algorithm to route efficiently a fleet of shuttles to rebalance
FFEVSS by utilizing policy gradient methods. Our training
algorithm does not require splitting an urban network into
sub-clusters for each shuttle, but instead allows developing
policies that efficiently utilize shuttles and drivers in a whole
network. Fourth, we develop a simulator to mimic real-world
FFEVSS, which serves as the environment for training an
RL-agent and allows efficient exploration of joint actions of
multiple shuttles.

Moreover, unlike the solutions obtained using the methods
from the literature, the empirical results obtained from
this study show that the proposed method allows solving
the general version of the problem with no restrictions
on the urban network structure and charging levels of
EVs. Moreover, the learned policies offer a wide range of
flexibility resulting in a significant reduction in the time
needed to rebalance the network.

The remainder of the paper will proceed as follows. In
Section II we provide an overview of relevant literature and
outline the unique challenges of the rebalancing FFEVSS. In
Section [II we present the problem formulation. In Section
[V we introduce the proposed reinforcement learning model.
In Section V we demonstrate the results of our computational
studies. Lastly, in Section VI we provide concluding remarks.

II. RELATED WORK

Even though the problem of rebalancing FFEVSS has been
recognized as essential for their sustainable existence in the
literature [9, 10], most of the studies focus on high-level
approaches to address the issue. One category of studies
falls on incentive-based methods that aim to rebalance the
system through influencing customer behavior [11]. Another
set of papers study the deployment of personnel and offer
rule-based high-level decision-making frameworks [12, 13].
There are only a few studies that specifically focus on the
shuttle routing problem to rebalance FFEVSS, thus offering
detailed solutions for day to day operational challenges.

One of such studies is [3], which aims to solve both for
EV relocation and shuttle routing problems jointly. However,
the proposed model does not enforce relocation of EVs
directly to demander nodes, but indeed permits leaving
EVs in charger nodes. As a result, charger stations will
be blocked and cannot be reused requiring the postponing
of charging for the remaining set of EVs. Similarly, in a
recent study [4] presents novel approaches in addressing
EV relocation and shuttle routing problems simultaneously.
Even though the study aims at relocating EVs directly
to demander nodes, it assumes the abundance of charger
stations in an urban network. Thus, again reusing charger
stations is not considered and the postponement of charging
for EVs requiring it is allowed. Since charging infrastructure
is often limited [14], the reuse of charging stations must be an
integral part of solutions to rebalance FFEVSS in real-world
urban networks.

Recently reinforcement learning approaches gained
popularity to solve various problems in transportation
including fleet management and rebalancing in ride-hailing
services [15]-[18]. However, none of the existing studies
focus on FFEVSS specifically and do not address the
unique issue of charging and relocation together. For solving
VRPs, deep reinforcement learning has been first applied
in [6], which utilizes sequence to sequence methods [19]
and an attention mechanism [20]. Later [21] adopted the
transformer model [22] to solve VRPs without recurrent
neural networks. [8] proposes a novel model to solve online
VRPs by utilizing neural combinatorial optimization and
deep reinforcement learning. Similarly, [23] presents a hybrid
model that combines local search with attention mechanism.
However, these studies focus on routing a single capacitated
vehicle, where the main goal is to minimize the distance
traveled. While multiple loops of a single capacitated vehicle
can be interpreted as multiple vehicles, this paper is the first
to present an explicit modeling of multiple vehicles within
an RL framework.

Although this study also adopts sequence to sequence
models with attention mechanism similar to [6], the
significant differences in the nature of the rebalancing
FFEVSS problem and VRP dictate the development of novel
solution techniques. For instance, in the given problem,
shuttles need to leave a depot, drop off, pick up drivers who
relocate EVs, and return back to the depo, highlighting two
sets of constraints. First, the precedence of visited nodes
needs to be maintained when charging stations are visited
after nodes with EVs and nodes that require EVs are visited
after either charging stations or nodes with EVs. Second,
the capacity constraint must be satisfied when nodes with
EVs are visited only when there is a driver in a shuttle
and nodes with drivers are visited only if there is seating
available for a driver in the shuttle. In addition to feasibility
constraints, since both charging and relocations of EVs are
involved in the shuttle routing problem, only considering
factors that affect the total distance traveled is not sufficient.
Moreover, the dynamics of an urban network due to routing
a shuttle is more complex compared to the VRP due to the

Fig. 4: EV relocation Case 1.

Fig. 5: EV relocation Case II.

delayed movements of EVs relocation. Also, routing multiple
shuttles requires a novel training algorithm. In particular,
when several shuttles are present in an urban network and
each of their movement influence the state of the network,
we need a novel framework that enables the application
of reinforcement learning tools based on Markov Decision
Process (MDP).

III. PROBLEM STATEMENT AND FORMULATIONS
A. Network

Let us consider a network N consisting of N number of
nodes and a depot. We define a node as a supplier, if it has an
excess EV, and a demander, if it requires an EV. The network
also has charger nodes. Each node in the network can store
at most one EV. Depending on the charging levels of EVs
there are two possibilities of the EVs relocation. In Case I,
EVs are relocated from supplier nodes directly to demander
nodes as shown in Figure 4. In Case II, EVs first need to
be taken to charger nodes and after charging is complete,
they need to be relocated to the demander nodes as shown
in Figure 5. We consider discrete charging levels of EVs,
where a threshold-based rule is applied to decide whether to
charge an EV or not. We consider two settings of the problem
when a single shuttle or a fleet of shuttles is deployed for
rebalancing the system. We formulate the routing problem
for a single shuttle as MDP and utilize a central controller
to route a fleet of shuttles.

B. Multi-shuttle Routing as MDP

Even though it is possible to formulate the routing
of a fleet of shuttles using a multi-agent reinforcement
learning framework, such an approach suffers from several
drawbacks. Firstly, in the presence of several shuttles,
each of which is treated as an autonomous agent, the
stationary assumption of MDP is no longer valid [24]. In
particular, in the presence of other agents in the environment,
the Markovian property, which states that reward and
current state only depends on individual action and previous
state, does not hold. Therefore, a multi-agent reinforcement
learning framework works under partially observable MDP
[25]-[27], when each agent can observe only a local
view of the network [28]. Then each agent can only visit
nodes visible from its local view, which imposes significant
restrictions on developing an efficient routing. Secondly,
training autonomous agents is challenging without making
strong assumptions about constant communication between
agents. For instance, if at the current time step one agent
selects a node to visit, then such information must be shared
among other agents to avoid the presence of several agents

at the same node. Lastly, under a static network, when
the state of the network is constant and well-known, a
centralized approach will help navigate a fleet of shuttles
efficiently. Therefore, we formulate routing multiple shuttles
to rebalance FFEVSS using a central controller, that is
responsible for making routing decisions of all shuttles.
Then, we can formulate the problem using a single-agent
reinforcement learning framework and MDP.

A fleet of shuttle with drivers leaves a depot and visits
nodes in the network to relocate EVs from supplier nodes
to demander nodes. Shuttles must return to a depot after
fulfilling demand at all demander nodes and picking up all
the drivers. These sequential decisions of a central controller
for routing shuttles under uncertain demand (locations of
drivers) can be formulated as a finite horizon MDP, where
the future dynamics of the system depend only on the current
state. We define the RL framework for the problem as tuple
M = (X, A, P,R,T) representing states, actions, transition
probabilities, reward function, and time horizon, respectively.
The definitions are as follows:

o T ={1,...,I}is the set of I shuttles that are controlled
by a central controller;

o State set X represents the network, where for each node
it shows its location, the relative distance, the number of
EVs, the number of drivers, the charging levels of EVs’
and indicators for the expected transitions. We utilize
binary vectors to indicate if there is an expected EV
coming to a node. We denote state as x; at time t.

« A is the set of joint actions such that A, = A} x A7 x
-+ x AF, where Al is the action set of shuttle 7 at time
t and action a! indicates a node number to be visited
next by shuttle i. Then a central controller’s action set
consists of joint actions of all shuttles, A;, at time t.

o Transition Probabilities function, P, determines state
transitions probabilities p(z;y1|xs,a;) at time ¢ with
respect to taken action a;. In the given problem,
transitions are deterministic, but often delayed. After an
action is taken, the relocations of EVs are scheduled.
However, the actual state transitions related to the
movements of EVs occur later as shown in Figure 3.

o All shuttles share a common reward R and immediate
reward r;, which are assigned based on the joint actions
of all shuttles at time ¢ denoted by a; and state x;;

o Instead of defining the specific time value of T, we
define one episode rollout for the problem based on the
experiment outcomes. One episode is terminated either
if all demander nodes are fulfilled and all drives are
picked up back to a depot or if the total number of
time steps exceeds the predefined maximum time steps,
the value of which is set based on the size of a network.

o Each time step ¢ is determined by the earliest fulfilled
action among all shuttles. Thus, each time step starts
when a central controller takes an action and finishes
whenever any action is fully executed.

IV. REINFORCEMENT LEARNING MODEL

We adopt policy gradient methods, that are similar to
those popularly used in routing problems [6, 8,21], to learn
the complex routing policies of shuttles directly. In general,
policy gradient methods consist of two separate networks: an
actor and a critic. The critic estimates a value function given
a state according to which the actor’s parameters are set to
generate policies in the direction of improvement We train
an agent and a central controller to route a single shuttle
and multiple shuttles in an urban network by simulating the
FFEVSS environment. The simulator is developed to handle
EVs relocations through rule-based decisions and utilizing
sequence to sequence models to generate policies.

A. The FFEVSS Simulator

The main function of the FFEVSS simulator is to represent
the dynamics in an urban network caused by movements
of shuttles. There are immediate and delayed transitions
related to routing shuttles. In an immediate update to the
environment at each time step, we consider locations of
shuttles, drivers, EVs, the number of drivers in a shuttle and
fulfillment of scheduled transitions either related to charging
or relocation of EVs. Also, at each time step, we schedule
transitions related to movements of EVs that have started,
but unfulfilled. In particular, starting at current clock time
t. = 0, we update the environment according to movements
of a shuttle:

if Ny 7é Ty

if Ng_1 = Ny

te + 7(ne—1,n4)

te <
tc+wt

where 7 represents traveling time between nodes visited by
a shuttle at time ¢t — 1 and ¢ and w; denotes waiting time at
node n. We define waiting time at node n as the difference
between the time when a delayed transition at node n occurs
and the time when a shuttle reaches node n. To account
for delayed transitions we introduce a time vector, which
keeps track of remaining times until either EVs arrive at
designated nodes or their charging completes. In the case of
multiple shuttles, the environment is updated with the earliest
movements of shuttles.

Another function of the FFEVSS simulator is to update
a masking scheme according to the current state of the
urban network. The masking scheme helps to maintain the
feasibility of solutions related to the precedence of visited
nodes and the number of drivers in a shuttle. Also, having
an efficient masking scheme expedites the exploration of
action space. We deploy the following masking scheme,
where A; =) stores the set of available nodes/actions to
visit at time ¢ and the rest of the nodes are masked. For each
n € N, we update:

A U{n}
.At U {n}
Here set & denotes nodes with an EV or nodes with the
expected EV due to delayed transitions, set D; denotes nodes

with a driver or nodes with the expected drivers, and I;
denotes the number of drivers in a shuttle at time ¢.

ifl; >0 andneDtU&

Ay
i ifl,=0 andnc D,

B. EV relocation decisions

As described earlier, our focus in this study is to solve for
the shuttle routing problem. Hence, we are using a rule-based
approach for EVs’ relocation decisions. The rule-based
approach is as follows: every time a supplier node with
an EV has a driver, that EV is relocated to the nearest
available either charger or demander node. The decision of
whether to relocate an EV to a demander or charger node
is predetermined in the settings of a simulator. We apply a
threshold-based rule; that is, if the charging level of an EV
exceeds the threshold, then it can be directly relocated to a
demander node or must be charged, otherwise.

We maintain a binary vector in the simulator to indicate if
a charger node is available or not. This representation helps
in deciding the relocation of an EV from a supplier node to
an available charger node. We determine the closest available
charger node by multiplying the binary vector by a time
matrix that indicates time to travel among any pair of nodes.
To decide EVs’ relocations from either supplier or charger
nodes to demander nodes, we maintain a demand matrix that
keeps track of demander nodes that still need an EV at time .
In particular, in the simulator we store time needed to move
from all nodes to each demander node and increase those
values to large numbers, if a demander node is satisfied.
Then, if an EV needs to be relocated to a demander node,
we compute the minimum time from a node to the closest
demander nodes.

C. A sequence-to-sequence model for the shuttle routing
problem

Motivated by [6], we propose using a sequence to
sequence model for rebalancing FFEVSS, which typically
consists of an encoder and a decoder. Given urban network
N, we aim to generate a sequence of nodes to be visited by
either a shuttle or a fleet of shuttles. In other words, we are
interested in learning the following conditional probability
or parametrized policy 7p:

T-1
mo(Yrlzo) = [o(rslz:, ¥) (D
t=0
In (1), we let z; = {x},...,zN}, where z} denotes

static and dynamic states of node n at time ¢. Unlike in
machine translation, the state of nodes in the network status
changes dynamically with shuttles movement; thus, we need
to consider both static and dynamic states for each node.
Also, we let y; denote a node to be visited at time ¢ and
Y: ={y1,...,y¢} with Yy = (). Then to select a next node
to visit y;11, we are interested in learning ¢(yiy1|xe, Yz)-
However, a set of nodes in the network does not
convey any sequential information. Therefore, it is common
in literature [6], to omit recurrent neural network for
encoding. Indeed, due to the sparse nature of networks, graph
embedding is deployed in encoder to build their continuous
vector representation as they suit better for statistical learning
[29]. The following equation describes embedding for each

A)
7y = b+ W, 3)

where, 7 and a‘cgt are embedded static and dynamic states of
node n at time ¢ and b, W represent the trainable parameters
of a neural network. We denote by 7y = (7};77)
concatenation of embedded static and dynamic states of
nodes.

For decoding we use recurrent neural networks (RNN),
that takes static state of the last visited node and stores the
sequence as follows:

hy = Whf(he_1) + W=z 4)

where h; is a memory state of RNN, f represents nonlinear
transformation and z7 is a static state of node n visited at
time t. Trainable weight matrices W" and W?® represent
connections between hidden state to hidden state and hidden
state to an input respectively.

In addition to encoder and decoder, we also utilize content
based attention mechanism as in [6]. Content based attention
tries to mimic associative memory and is designed to handle
cases when an input to the sequence to sequence model
is a set [20]. In particular, the current state of an urban
network is coupled with the memory state of RNNs about
the sequence to calculate an alignment vector ¢, that assigns
the probabilities of nodes to visit next:

uy = vtanh(W(zZ}; hy)) Vn e N ®)

¢; = softmax(u;) (6)

where v and W are trainable weight matrices.

For the problem under study, we define the static state of
nodes as their location coordinates and the initial charging
levels of EVs at supplier nodes. Even though charging levels
of EVs will change as EVs are taken to charging stations,
only their initial values determine charging times. Therefore,
we consider them as a static state of nodes. For dynamic
representation of the states of nodes we use the number of
EVs, the number of drivers in a shuttle and the distance
from the current node to other nodes. Our experimental
studies show that passing distance information as a dynamic
state of nodes substantially reduces training time. Figures 6
summarizes the sequence to sequence model of the shuttle
routing problem. In routing a fleet of shuttles, we also deploy
a single actor network, where a sequence of visited nodes Y;,
includes nodes visited by all shuttles up to time t.

D. Reward Function

Reward function along with sets of available actions
reflects our aim to maintain the feasibility and efficiency
of routing decisions. Since the shuttle routing problem
considers both charging and relocation of EVs, reward
function must not only reflect traveling times between nodes,
but also include waiting times. Therefore, we define reward
function as the negative of total time spent in the system
starting when a shuttle or a fleet of shuttles leaves a depot and

Encoder

o} fomn) N

Last visited node

LSTM -= ==

Decoder

Attention Mechanism

Fig. 6: Sequence to sequence model for the shuttle routing problem,
red represents dynamic and blue represents static states of nodes.
Conv1D represents an 1-dimensional convolution neural network
for embedding and P = ¢(y¢+1]|xt, Yz).

ending when all shuttles are returned back to the depot with
all drivers after fulfilling all demander nodes. Then our aim
is to maximize the negative of total time spent in the system
denoted by R. More formally we define reward function as
follows, using immediate rewards 7;:

T
R=> r 7
t=1
where
= 77’(7745_1, ’Ilt) if Nne—1 7é Ty
k — Wt if Ng_1 = N

and 7; is traveling time and w; is waiting time at time ¢.

E. Training Algorithm

In training we are interested in finding policy parameters
0 that maximize the total expected reward:

0, = argmax E,,[R] (8)
0

Given the state of network X, we can rewrite the expression
as follows:
J(Or|x) = Br(o, |2 [R(T]2)] 9)

Then we update values of policy parameters 6 in the direction
of the following gradient using Advantage function A™:

VoJ(0r]z) = Ex[A™Vglogpe, (7|2)]
A™ = R(w|z) — V(=)

(10)
(11

Even though it is possible to estimate Advantage function
using temporal difference methods by utilizing n-step returns,
the nature of the problem under study dictates considering a
full episode to minimize the total time spent in the system.
Therefore we use the REINFORCE algorithm with a baseline
[30] as the value of the initial state of an urban network

estimated by a critic. Algorithm | represents our training
procedure. The details of Data Generator can be found in
the experiments section. Unlike in the existing literature [4],
the algorithm does not require splitting an urban network
into sub-clusters for each shuttle, but instead deploys all
shuttles to serve the whole network. Also, utilizing a central
controller that observes the entire urban network state along
with the masking scheme in the simulator, allows efficiently
exploring joint action of all shuttles. For instance, if a node
has been assigned to be visited by a shuttle then that node
is masked for other shuttles.

Algorithm 1 Training Algorithm

1: Initialize network parameters 8° and 6¢ for actor and
critic networks respectively. Set the maximum number
of epochs, a batch size and the maximum number of
steps denoted as Mepochs, Mepis and 1" respectively;

2: for epochs = 1 to Mepochs do

3: Reset gradients df®, df<;

4: for m =1 to M do

5: data ~ DataGenerator(p);

6: xg', Ao = simulator.reset(data);

7: Store initial state zj* in Xy, set R™ = 0;
8: Add index of each shuttle 7 to L;

9: for t=0 to T" do

10: for each 7 € L do

11: al, pi = actor-network(z;, A%);

12: Store pi in p™, remove a} from Ay;
13: end for

14: Ttr1, Att1, Tt te = simulator.step(az);
15: Empty set L;

16: for each 7 € 7 do

17: if a! is complete at ¢, then

18: add i to L

19: else

20: ai, = a; and remove aj from A; 1,
21: end if

22: end for

23: R™ = R™ + ry;

24: end for

25: calculate V"™ (z{)"; 0.) using critic

26: end for

A6 = g Y (R — V@ 60.)) Ve log

8. dY° = Mlc,,is S M ge (R™ — V™ (23 6,))2;
29: end for

V. COMPUTATIONAL STUDIES
A. Data Generation and Configurations

We consider 1 x 1 square mile network consisting of
demander, supplier, and charger nodes. We first specify the
total number of nodes in the network and the number of
demander and charger nodes. We sample X, y coordinate of
each node from a uniform distribution with values ranging
from O to 1. Similarly, we sample demander, charger, and
supplier nodes from a uniform distribution. For each supplier

TABLE I: Hyperparamter values

Hyperparameter Value
Convolution 1D hidden dimensions 128
LSTM hidden dimensions 128
Critic hidden dimensions 128

Feed-forward network hidden dimension in critic 128
Learning rate for actor and critic 0.0001

node we set the initial charging levels of EVs randomly
between 1 and 5. We assume that EVs do not need charging
and can be directly taken to demander nodes if their charging
levels exceed 3. Otherwise, EVs first need to be taken to
charger nodes, where all of them charged until the charging
level of 5 is reached. For each charging level, we assign the
charging time equal to average traveling time between all
pairs of nodes in the network. We do not consider discharging
rates in the movements of EVs. We assume the constant
velocity for EVs equal to 45 miles/hour.

Computational experiments are conducted with 2 Intel
Xeon E5-2630 2.2 GHz 20-Core Processors (30MB), 32GB
RAM, and the Ubuntu 18.04.4 LTS operating system. All
implementations are done in Python 3.7 using PyTorch 1.5.
In our implementations of critic network has similarities
to the actor network structure except using RNN to store
sequence information. We first embed the initial static state
of the urban network using 1D convolution networks and
then pass it to attention mechanism, where RNN hidden
state is replaced by a matrix of zeros. We repeat the process
three times and pass the output of attention mechanism
through a sequence of feed-forward networks to obtain the
final estimate for a value function. Table | represents the
hyperparameters used for training.

We train RL agents on networks of various sizes and
difficulty levels. For each problem class defined by the size
of a network, we consider instances with 3 different levels
of difficulty. Cases when there is an abundant presence of
charging stations than the number of EVs requiring charging
we call easy instances. Similarly, cases when there is an
exact number of charging stations as the number of demander
nodes we call medium difficulty instances. Finally, cases
when there is a less number of charging stations than the
number of demander nodes we call them hard instances. The
descriptions of difficulty levels are found in Table II.

B. RL agents and Benchmarks

We train three types of agents using the proposed RL
models. The first agent denoted as gen-RL is trained on
all three difficulty levels, but on a fixed network size. The
second agent denoted as net-RL is trained on networks of
various sizes, but it is tailored to a specific difficulty level.
The last agent denoted as RL is trained on a fixed network
size and on a specific difficulty level.

For our computational studies, we consider a benchmark
from [4]. The benchmark model denotes as Sim represents a
joint model that solves for EVs relocation and the shuttle
routing problem simultaneously. To solve multi-shuttle

routing problems, the heuristic splits an urban network into
some clusters and solve a single-shuttle routing problem
for each cluster. However, there are some limitations of
the method. One of them is related to the inflexibility of
the solutions when drivers that have been dropped off from
one shuttle cannot be picked up by other shuttles. Another
disadvantage is related to charger nodes. The heuristic can
only handle the cases of the problem when the number of
charger nodes is not less than the number of EVs that must
be charged.

C. Results

Figure 7 shows training rewards for the single-shuttle and
multi-shuttle problems on the network with 23 nodes and 3
drivers. Overall, training time depends on the network size,
its structure and the features passed to the actor network. In
both cases, using distance information from the current node
to other nodes in the actor network results in better rewards
compared to when not passing such information.

To compare different RL agents’ performances we conduct
experiments on various network sizes and the degree of
difficulty of instances and measure the mean of the total time
spent in the system out of 128 instances. Table III shows
the experiments’ results. In most instances RL agent trained
on a specific size and a specific instance difficulty level
tend to perform the best. We observe that net-RL agents,
trained on various network sizes, tend to perform better
on larger network sizes, while gen-RL agents, trained on
various difficulty levels, can be competitive on medium sized
networks. As the network size increases, the results show that
using net-RL and gen-RL agents can be beneficial. For the
rest of experiments, we use RL agent.

Table IV illustrates the performance of the RL solutions
with those of the heuristic optimization method, labeled
Sim. The reinforcement learning approach can solve all
instances of the problem, while the optimization method
can handle only easy and medium cases. Moreover, for
easy and medium cases measured in the mean of total time
spent in the system, the RL solutions perform better than
the heuristic optimization solutions. We also, note that the
derived RL solutions do not solve for optimal relocation
of EVs and only based on predefined rules, while the
simultaneous approach of the heuristic optimization solves
for both the shuttle routing and EV relocation problems.
Also, Table IV shows the performance comparison of Sim
and RL models in terms of percentages of winning instances.
For instance, in a RL-Sim pair comparison, the value of cells
under the column indicates the percentages of instances when
RL model performed at least equally to Sim model out of
128 test instances. As shown in Table IV the RL model
performs better than the heuristic method in at least 50%
of all instances, except one instance.

To show the generation of the instantaneous solutions
using RL models, we measured computation time. Table
V demonstrates the computation time it takes to derive a
solution under Sim and RL models. We report an average
time to solve an instance out of 128 instances in total.

TABLE II: Difficulty levels description, where De, Ch, Su, and Su’ denote the set of demanders, chargers, suppliers, and suppliers
with EVs that require charging, respectively.

Easy Medium Hard
NI |[De| |Ch| |Sul |Su'| |De| |Ch| |Su| [Su'| |De| |Ch| |Su| |Su|

23 7 7 8 4 7 7 8 8 8 6 8 8
50 16 16 17 8 16 16 17 17 17 15 17 17
100 33 33 33 16 33 33 33 33 33 32 34 34

TABLE III: Comparison of RL agents in terms of total time spent in the system, the average of 128 test instances are reported. In bold
are the best results.

Easy Medium Hard

Nl |Z| |Dr] net-RL gen-RL RL net-RL gen-RL RL net-RL gen-RL RL
23 1 3 9.29 8.34 7.70 14.63 11.75 10.27 16.01 13.73 12.32
2 3 6.01 5.79 5.40 7.93 8.45 6.93 8.89 9.00 8.34

3 2 5.48 5.28 5.21 7.02 7.58 6.38 8.33 8.11 7.79

50 1 3 14.97 1396 13.77 20.35 19.36 17.93 22.60 20.05 18.92
2 3 8.54 8.21 8.41 11.81 1081 11.23 12.15 11.76 11.96

3 2 7.22 6.90 6.89 9.58 941 9.23 10.33 9.89 9.77

100 1 3 23.16 2298 2218 30.62 3233 30.67 31.53 3230 36.67
2 3 1291 1425 1292 17.55 1842 17.54 17.21 18.79 17.90

3 2 10.23 10.21 10.21 13.39 13.73 13.33 13.69 13.67 14.94

TABLE IV: RL model vs. the heuristic optimization in terms of total time spent in the system and the percentages of winning instances,
the average of 128 test instances are reported. In bold are the best results.

Easy Med Hard

Mean Win % Mean Win % Mean
N1 |Z| |Dr| Sim RL RL-Sim Sim RL RL-Sim Sim RL
23 1 3 8.81 7.70 8594% 1239 10.27 94.53% - 1232
2 3 5.72 5.40 65.63% 7.43 6.93 73.44% - 8.34
3 2 5.27 5.21 51.56% 6.39 6.38 48.44% - 7.79
50 1 3 1734 13.77 96.09% 2459 17.93 100.00% - 1892
2 3 9.19 8.41 74.22% 12.25 11.23 73.44% - 1196
3 2 6.96 6.89 53.13% 9.25 9.23 50.00% - 9.77
100 1 3 3420 2218 100.00% 4597 30.67 100.00% - 36.67
2 3 1611 1292 100.00% 21.63 17.54 96.09% - 1790
3 2 1171 1021 86.72% 15.63 13.33 92.97% - 1494

TABLE V: Computation time in seconds to derive solutions, the average of 128 test instances are reported.

Easy Medium Hard

N |Z] |Dr| Sim RL Sim RL Sim RL
23 1 3 7.07 0.01 13.98 0.02 - 002
2 3 1.61 0.04 331 0.04 - 0.09

3 2 091 0.06 1.71 0.05 - 0.11

50 1 3 4843 0.05 98.61 0.05 - 0.06
2 3 11.62 0.21 2347 0.16 - 025

3 2 535 020 10.75 0.21 - 035

100 1 3 15215 016 59936 0.17 - 026
2 3 66.13 044 118.68 044 - 055

3 2 2823 092 5386 1.03 - 102

24 4 |l —== without
|l — with
224 1
1
1
1
w209 1
o |
E 1
= 18 |I
g1\
e i
|
14 A
12 A
0 5 10 15 20 25
Episodes
(@) IN]|=23,|Dr|=3,|Z| =1
9.5 —-=—=- without
' — with
9.0
8.5
%)
D 80
©
2751
Iod
7.0
6.5
6.0
0 5 10 15 20 25
Episodes

() |N| = 23, |Dr| =3, |Z| = 2

Fig. 7: Training rewards with and without distance as an input

The difference in deriving solutions between Sim and RL
models increases up to 585 times in the case of a single
shuttle routing in a network with 100 nodes for Easy instance
difficulty level.

We also compare the effects of the number of drivers
and difficulty levels on the trained models. In particular,
we train models with a specific number of drivers on easy,
medium and hard instances on a fixed network size and check
these models’ performances against the models with varying
a number of drivers and difficulty levels. For example, in
Tables VI and VII rows indicate the problems’ configurations
in testing and columns indicate the problems’ configurations
in training datasets. The cells corresponding to a row and
column show the percentages of instances when a trained
model outperformed the model specifically trained for a test
dataset. As we observe for both single and multi-shuttle
problems, models trained on specific difficulty levels tend to
perform better on similar instances with a different number
of drivers compared to on test models with the same number
of drivers, but different difficulty levels.

The sample solution for a single-shuttle case, where 4
EVs in an urban network require charging is shown in
Figure 8. A shuttle with 3 drivers leaves the depot and
visits supplier nodes first followed by a charger node. By

TABLE VI: The number of drivers vs. difficulty levels, a single
shuttle case.

Trained On
~ N [a\] o ool o
[I [[I [
5 s 5 5 = 3%
5] = o] 5] = as]
E, dr=2 0 33.6 242 328 219 55
5 M,dr=2 102 0 11.7 0 273 7.8
2 H,dr=2 21.1 39 0 0 2.3 32.0
% E, dr=3 227 4.7 8.6 0 156 39
E Mdr=3 125 178 10.9 0 0 8.6
H, dr =3 195 1.6 31.3 0 1.6 0
TABLE VII: The number of drivers vs. difficulty levels, a
multiple-shuttle case.
Trained On
~ [a] o~ o (2] o
[I [[I [
5 S 5 5 <= %
o = D oo 0 = o]
E, dr =2 0 148 164 3.1 10.9
5 M,dr=2 63 0 21.9 0 8.6 14.8
2 H, dr =2 109 39 0 0 6.2 | 40.6
‘%‘ E, dr=3 234 117 125 0 6.3 7.0
E M dr=3 148398 14.1 0 0 14.8
H, dr =3 172 0.8 | 375 0 3.1 0
® Demander [
@® Supplier
@® Charger _.
® Depo 67
shuttle @~ e
Y N //_;”' NS °
P A:"’ w0 23 N
’ ; 2 NS
4 // 2N
o S , P ®]
/,l T /'/ 1\3
‘, 2 /// ° :G\ > "
AT VY
,/' &5’
/ _“,,
o |/ |-
Z P8 e
Fig. 8: Example solution for a single-shuttle case, |[N| = 23,
|Dr| =3 and |Z] = 1.
® Demander Y !]
® Supplier [] s ,/’
Do > S
;ztﬁs:hu:i(lee f\\ s =2 ° //:.o b]
-—- EV o S, S TP rics
! Sl T Ll
f \\\ NS
: b i
LT TN (]
° /,/' \;’\\z:)
\ N [4 1 - e
Fig. 9: Example solution for a multiple-shuttle cases, || = 23,

|Dr| =3 and |Z] = 2.

interchangeably visiting nodes thorough the network, the
shuttle returns back to the depot after picking up drivers
from demander nodes. We can observe the versatility of
the produced solutions looking at the charging stations. For
instance, a driver dropped off at the first visited supplier node
relocates the EV to a charging station, waits there until the
EV is charged and then relocates it to a demander node.
Only then the driver is picked up by a shuttle. In another
example, the driver dropped off at the second visited supplier
node is picked up immediately at a designated charging
station by a shuttle. Similarly, Figure 9 represents the sample
solution for the case with 2 shuttles. Each shuttle visits first
supplier nodes until it runs out of drivers. Then each of them
interchangeably visits charger, supplier and demander nodes
and returns back to a depo. The flexibility of the produced
solutions can be observed when a driver originally dropped at
the second visited supplier node by the first shuttle is picked
up at a charging station by the second shuttle.

VI. CONCLUSION

This study solves the shuttle routing problem for FFEVSS.
We consider a static network, in which a group of
drivers is deployed to relocate EVs from supplier nodes to
charger and demander nodes. We propose a reinforcement
learning approach to learn routing policies for single-shuttle
and multi-shuttle cases. The proposed solution methods
allow solving the new class of problem instances, while
demonstrating improved results on instances solvable by
existing methods in the literature. We also present several
RL agents that generalize on various network structures
or network sizes and we demonstrate that the RL agent
specifically trained on a network produces superior results.

REFERENCES
[1] D. Kypriadis, G. Pantziou, C. Konstantopoulos, and D. Gavalas,
“Minimum walking static repositioning in free-floating electric
car-sharing systems,” in 2018 2Ist international conference on
intelligent transportation systems (ITSC), pp. 1540-1545, IEEE, 2018.
A. G. Santos, P. G. Candido, A. F. Balardino, and W. Herbawi,
“Vehicle relocation problem in free floating carsharing using multiple
shuttles,” in 2017 IEEE Congress on Evolutionary Computation
(CEC), pp. 2544-2551, IEEE, 2017.
C. A. Folkestad, N. Hansen, K. Fagerholt, H. Andersson, and
G. Pantuso, “Optimal charging and repositioning of electric vehicles in
a free-floating carsharing system,” Computers & Operations Research,
vol. 113, p. 104771, 2020.
Z. Haider, H. Charkhgard, S. W. Kim, and C. Kwon, “Optimizing
the relocation operations of free-floating electric vehicle sharing
systems.” Available at SSRN: http://dx.doi 2139/
ssrn.3480725, 2019.
[5]1 I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio,
“Neural combinatorial optimization with reinforcement learning,”
arXiv preprint arXiv:1611.09940, 2016.
M. Nazari, A. Oroojlooy, L. Snyder, and M. Takdc, “Reinforcement
learning for solving the vehicle routing problem,” in Advances in
Neural Information Processing Systems, pp. 9839-9849, 2018.
A. K. Kalakanti, S. Verma, T. Paul, and T. Yoshida, “Rl solver
pro: Reinforcement learning for solving vehicle routing problem,” in
2019 Ist International Conference on Artificial Intelligence and Data
Sciences (AiDAS), pp. 94-99, IEEE, 2019.
J. James, W. Yu, and J. Gu, “Online vehicle routing with neural
combinatorial optimization and deep reinforcement learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 10,
pp. 3806-3817, 2019.

[2]

[3]

[4]

.org/10.

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

F. Schulte and S. VoB, “Decision support for environmental-friendly
vehicle relocations in free-floating car sharing systems: The case of
car2go,” Procedia CIRP, vol. 30, pp. 275-280, 2015.

S. Herrmann, F. Schulte, and S. VoB, “Increasing acceptance of
free-floating car sharing systems using smart relocation strategies: a
survey based study of car2go hamburg,” in International conference
on computational logistics, pp. 151-162, Springer, 2014.

S. Weikl and K. Bogenberger, “Relocation strategies and algorithms
for free-floating car sharing systems,” IEEE Intelligent Transportation
Systems Magazine, vol. 5, no. 4, pp. 100-111, 2013.

S. Weikl and K. Bogenberger, “A practice-ready relocation model
for free-floating carsharing systems with electric vehicles—mesoscopic
approach and field trial results,” Transportation Research Part C:
Emerging Technologies, vol. 57, pp. 206-223, 2015.

M. Zhao, X. Li, J. Yin, J. Cui, L. Yang, and S. An, “An integrated
framework for electric vehicle rebalancing and staff relocation in
one-way carsharing systems: Model formulation and lagrangian
relaxation-based solution approach,” Transportation Research Part B:
Methodological, vol. 117, pp. 542-572, 2018.

L. He, G. Ma, W. Qi, and X. Wang, “Charging an electric
vehicle-sharing fleet,” Manufacturing & Service Operations
Management, 2020.

J. Shi, Y. Gao, W. Wang, N. Yu, and P. A. Ioannou, “Operating electric
vehicle fleet for ride-hailing services with reinforcement learning,”
IEEE Transactions on Intelligent Transportation Systems, 2019.

K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale
fleet management via multi-agent deep reinforcement learning,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1774-1783, 2018.

J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared
mobility-on-demand systems: A reinforcement learning approach,”
in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), pp. 220-225, IEEE, 2017.

N. Sadeghianpourhamami, J. Deleu, and C. Develder, “Achieving
scalable model-free demand response in charging an electric vehicle
fleet with reinforcement learning,” in Proceedings of the Ninth
International Conference on Future Energy Systems, pp. 411-413,
2018.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, pp. 3104-3112, 2014.

O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” arXiv preprint arXiv:1511.06391, 2015.

W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve
routing problems!,” arXiv preprint arXiv:1803.08475, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, pp. 5998-6008,
2017.

J. Zhao, M. Mao, X. Zhao, and J. Zou, “A hybrid of deep reinforcement
learning and local search for the vehicle routing problems,” IEEE
Transactions on Intelligent Transportation Systems, 2020.

L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent
reinforcement learning: An overview,” in Innovations in multi-agent
systems and applications-1, pp. 183-221, Springer, 2010.

R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive
environments,” in Advances in neural information processing
systems, pp. 6379-6390, 2017.

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative
multi-agent control using deep reinforcement learning,” in
International Conference on Autonomous Agents and Multiagent
Systems, pp. 6683, Springer, 2017.

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Thirty-second AAAI
conference on artificial intelligence, 2018.

F. A. Oliehoek, C. Amato, et al., A concise introduction to
decentralized POMDPs, vol. 1. Springer, 2016.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 701-710, 2014.

R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine learning, vol. 8,
no. 3-4, pp. 229-256, 1992.

http://dx.doi.org/10.2139/ssrn.3480725
http://dx.doi.org/10.2139/ssrn.3480725

	Introduction
	Related Work
	Problem Statement and Formulations
	Network
	 Multi-shuttle Routing as MDP

	Reinforcement Learning Model
	The FFEVSS Simulator
	EV relocation decisions
	A sequence-to-sequence model for the shuttle routing problem
	Reward Function
	Training Algorithm

	Computational Studies
	Data Generation and Configurations
	RL agents and Benchmarks
	Results

	Conclusion
	References

