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1. Introduction 
 
The rapid development of intelligent transportation system technologies and the policy 

emphasis on their deployment have increased the importance of predictive dynamic network flow 
models, especially so-called dynamic network loading and dynamic traffic assignment models. In 
this chapter we provide a critical review of analytic models used in predicting time-varying urban 
network flows. Specifically, we examine and compare four types of dynamics used as the 
foundation of dynamic network models: 

  
     • dynamics based on arc exit-flow functions 
 
     • dynamics for which both exit and entrance flow rates are controlled, 
 
     • dynamics based on arc exit-time functions, and 
 
     • tatonnement and projective dynamics.  
 
 We then describe the other assumptions attached to these dynamics to create dynamic 

network loading and dynamic traffic assignment models. Our intent is to illustrate the usefulness 
and limitations of each category of network dynamics as a foundation for predicting dynamic 
network flows. Our review is not exhaustive, but rather focuses on those network dynamics which, 
in our opinion, have had the greatest impact and engendered the most scientific debate in recent 
years. Following our review of network dynamics we describe how these are combined with 
postulates regarding route and departure-time choice to create predictive models for dynamically 
loading and assigning traffic to a network. Our discussion is unabashedly not mathematically 
rigorous in order to make this chapter readable by the widest possible audience. That is to say, 
although we do use a lot of symbolic notation, one does not need to follow any difficult derivations 
or be proficient in the calculus, real analysis or functional analysis to follow the key aspects of the 
presentation. 

 
 2. What is dynamic traffic assignment? 
 
Static traffic assignment is, of course, that aspect of the transportation planning process that 

determines traffic loadings (expressed as flows, i.e., volumes per unit time) on arcs and paths of the 
road network of interest in a steady state setting. Dynamic traffic assignment (DTA) is concerned 
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with the same problem in a dynamic setting. DTA models may be either equilibrium or 
disequilibrium in nature. When the solution of a DTA model is a dynamic equilibrium, the flow 
pattren is time varying, but the trajectories through the time of arc and path flows are such that an 
appropriate dynamic generalization of Wardrop's first principle of user optimality is enforced at 
each instant of time. DTA models may be used to generate forecasts of traffic that illustrate how 
congestion levels will vary with time; these forecasts are intrinsically useful for traffic control and 
management in both the near-real time and deliberate planning contexts. The data requirements for 
DTA models are, on the surface, quite similar to those of static traffic assignment models; however, 
on closer examination, and as we make clear here, there is one very significant difference. That 
difference is that DTA models require path delay operators -- rather than the monotonically 
increasing-with-flow path-delay functions familiar from static assignment. Path delay operators 
express the delay on a given path in light of the time of departure from the origin of the path and the 
traffic conditions encountered along the path. This accounts for the fact that path traversal is not 
instantaneous and a platoon departing now will encounter traffic on subsequent arcs that may have 
departed previously as well as traffic that may have departed subsequently from the same or other 
origins. Thus, there is the potential for path delay operators to depend on the complete history (past, 
present and future) of flows on the network. Such delay operators are, except in certain special 
cases, not knowable in closed form;that is, delay operators for DTA are known only numerically for 
the general case and may require a simulation model to determine. 

In fact, there are two main categories of DTA models: those that employ rule-based 
simulation, and those that do not but are instead based entirely on equations and inequalities. This 
second category is usually referred to as analytical DTA models and is the focus of the balance of 
this paper. This emphasis has been chosen in light of the growing recognition that analytical DTA 
models are extremely useful for deliberate planning, and in our view seem likely to dominate such 
applications in the future due to their relative simplicity and lower manpower costs for 
implementation. 

 
 3. Dynamic network loading and dynamic traffic assignment 
 
Before proceeding, it is important to properly distinguish two overlapping problems that make 

use of traffic network dynamics. These are the dynamic network loading problem (DNLP) and the 
DTA problem (DTAP). The DNLP is the problem of finding dynamic arc volumes and flows (i.e., " 
loads" ) when time-varying departure rates for paths are known. Although a universally accepted 
statement of the DTAP has yet to emerge, in this chapter the DTAP will be the problem of 
simultaneously finding dynamic path departure rates and dynamic arc loadings. Clearly, in light of 
the above definitions, models for both the DNLP and the DTAP require submodels of how network 
arc flows change over time; it is these dynamic arc submodels which we call network dynamics. 
Submodels of route choice are coupled to network dynamics to create a model of dynamic network 
loading. If one also includes a submodel for departure-time choice, then a DTA model may be 
created from network dynamics. It is therefore not unreasonable to refer to network dynamics as the 
fundamental core of any model meant to address the DNLP and the DTAP. 

 
 3.1 Notation 
 
Several different notational schemes have been developed by the scholars working on 

dynamic network models. We employ, insofar as it is possible, a common notation for discussing 
the models reviewed herein; this notation must necessarily differ somewhat from that employed in 
the original articulation of certain models of network dynamics. Among the definitions that are 
employed repeatedly in the following presentation are: 

lji ,,  indices generally referring to network arcs 
a  subscript, generally referring to an arc of the network 
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p  subscript, generally referring to a path of the network 

ON  the set of origin nodes of the network 

DN  the set of destination nodes of the network 
A  the complete set of arcs of the network 
)(iA  the set of arcs having tail node 
)( jB  the set of arcs having head node 

P  the complete set of paths of interest for the network 
ijP  the set of paths connecting origin node i, to destination node j  

 
 4. Dynamics based on arc exit-flow functions 
 
Let us posit that it is possible to specify and empirically estimate or to mathematically derive 

from some plausible theory, functions which describe the rate at which traffic exits a given network 
arc as a function of the volume of traffic present on that arc. To express this supposition 
symbolically, we use )(txa  to denote the volume of traffic on arc a  at time t  and ))(( txg aa  to 
denote the rate at which traffic exits from link a. Where it will not be confusing, we suppress the 
explicit reference to time t and write the arc volume as xa and the exit-flow function as )( aa xg , 
with the understanding that both entities are time varying. It is also necessary to define the rate at 
which traffic enters arc a, which we denote by )(tua . 

Again, when it is not confusing we suppress the time dependency of the entrance rate for arc a 
and simply write ua. Note that both )( aa xg  and au  are rates; that is, they have the units of volume 
per unit time, so it is appropriate to refer to them as exit flow and entrance flow, respectively. A 
natural-flow balance equation can now be written for each link: 

  aa
a gu
dt
dx

−=  (1) 

where A denotes the set of all arcs of the network of interest. Although (1) is a fairly obvious 
identity, it seems to have been first studied in depth by Merchant and Nemhauser (1978a,b) in the 
context of system optimal DTA. The same dynamics were employed by Friesz et al. (1989) to 
explore certain extensions of the Merchant--Nemhauser work. Exit-flow functions have been 
widely criticized as difficult to specify and measure. Exit-flow functions also allow violation of the 
first-in-first-out (FIFO) queue discipline as illustrated and discussed by Carey (1986, 1987, 1992). 

The Merchant--Nemhauser dynamics enforce flow-conservation constraints which for a single 
destination and multiple origins may be expressed as  

  
( )

( )
( )

( )[ ] ( ) MktStxgtu kaa
iBa

a
kAu

∈∀− ∑∑
∈∈

=  (2) 

where )(tSk  denotes the rate of trip production at origin node k , M  is the set of all origin nodes, 
)(kA  is the set of arcs with tail node k , and )(kB  is the set of arcs with head node k . Obviously, 

the arc volumes and arc entrance rates are non-negative: 0)( ≥tx  and 0)( ≥tua  for all arcs. 
Consequently, if we let  

  Aatutxtutx aa ∈∀≡ ))(),(())(),((  
then the set of feasible solutions corresponding to these dynamics is 

  
( ) ( )( )

( )
( )

( )
( )[ ] ( )

( ) ( ) [ ]}0,;0,0,                                             

;=:,{=1

TtAatutx

MktStxgtututx

aa

kaa
iBa

a
kAu

∈∀∈∀≥≥

∈∀−Λ ∑∑
∈∈  (3) 

This allows the following shorthand summary of the Merchant--Nemhauser class of 
dynamics: 
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  ( )xgu
dt
dx

−=  (4) 

 
  ( ) 1, Λ∈ux  (5) 
 
  ( ) 0=0 xx  (6) 

where x  is the vector of state variables and u  is the vector of control variables; =(0)x  0x  of 
course represents the known initial conditions for the state variables with their time dependencies 
suppressed. 

 
 5. Dynamics with controlled entrance and exit flows 
 
A possible modification of the Merchant--Nemhauser arc dynamics that avoids the use of 

problematic exit-flow functions is to treat both arc entrance and exit flows as control variables; i.e., 

  ,= vu
dt
dx

−  (7) 

where v is an appropriately defined vector of exit-flow variables. By treating both arc entrance and 
exit flows as control variables, we do not mean to imply that any kind of normative considerations 
have been introduced, for these variables are viewed as controlled by the decisions of network users 
constrained by physical reality and observed only at the level of their aggregate (flow) behavior. 
Yet considerable philosophical debate has been engendered by dynamics (7). 

Some scholars argue that drivers do not control their exit flows and any model based on that 
assumption is invalid. This argument seems somewhat specious as the word " control" in this 
context is merely an artifact of the version of the calculus of variations used to analyze this category 
of model; namely, optimal control theory. However, a more well-founded criticism is that missing 
from the unembelished version of eq. (7) is any explanation of the queue discipline for the various 
origin--destination flows on the same arc. Just as with the exit-flow functions, we have no way of 
ensuring that the FIFO queue discipline is enforced without additional constraints or assumptions. 
So the real " benefit" of this formulation seems to be avoiding the specification and measurement 
difficulties associated with exit-flow functions, not in ensuring FIFO. It is also very important to 
realize that, as written, eq. (7) does not incorporate any traffic flow theory and so holds the potential 
of admitting other flow-propagation anomalies besides FIFO violation, a point that we discuss in 
more detail below. 

In fact, early efforts to use dynamics such as (7) resulted in flow-propagation speeds faster 
that would occur under free flow with no congestion for the arc delay functions used. This 
particular flow propagation anomaly has been called "instantaneous flow propagation" . Other 
scholars have referred to models based on (7) as "back to the future" models, to emphasize their 
potential to describe flow propagation at speeds greater than those associated with free 
(uncongested) flow. Presently, authors using dynamics like (7) have added flow-propagation 
constraints to their mathematical formulations in an effort to generally ensure physically 
meaningful model outcomes. 

In fact two types of flow propagation constraint for preventing instantaneous flow propagation 
in were suggested by Ran et al. (1993) for dynamics (7). The first is stated as  

  ( ) ( )[ ] ,,,= PpAattVtU a
p
a

p
a ∈∈∀Δ+  (8) 

where (.)p
aU  and (.)p

aV  are the cumulative numbers of vehicles associated with path p  which are 
entering and leaving link a , respectively, while )(taΔ  denotes the time needed to traverse link a  at 
time t , and P  is the set of all paths. The meaning of these constraints is fairly intuitive: vehicles 
entering an arc at a given moment in time must exit at a later time consistent with the arc traversal 
time. Ran and Boyce (1994) state that they do not actually employ this constraint in their 
applications but instead use a second type of flow-propagation constraint. However, we shall see in 
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a subsequent section that, despite the intuitive appeal of (8), these constraints omit a fundamental 
term. 

The second Ran et al. type of flow-propagation constraint is much more notationally complex 
and is omitted here for the sake of brevity. Suffice it to say that constraints of this second type are 
articulated in terms of path-specific arc volumes and are meant to express the idea that a 
path-specific traffic volume on an arc must ultimately visit a downstream arc or exit the network at 
the destination node of the path in question. Ran et al. argue that by enforcing this consideration 
they rule out FIFO violations and instantaneous flow-propagation anomalies. The Ran et al. 
framework for link dynamics, consisting of (7) and one or the other of their two types of flow 
propagation constraint, omits any effort to ensure consistency among their submodels for link 
dynamics, arc delay, and flow propagation. Like the models based on the Merchant--Nemhauser 
dynamics, the Ran et al. family of models also enforces flow conservation and non-negativity 
constraints, albeit expressed somewhat differently, and specifies initial conditions for the traffic 
dynamics. Consequently, dynamics of this family have the form 

 

  ,= vu
dt
dx

−  (9) 

  ,= e
dt
dE  (10) 

  ( ) ,,,,, 2Λ∈evuEx  (11) 
  ( ) ,=0 0xx  (12) 
  ( ) 0=0E  (13) 

where 2Λ  is the set of feasible solutions satisfying the flow conservation, flow propagation, and 
non-negativity constraints; while E  is the vector of cumulative departures for each path and e is the 
vector of departure rates for each path. Note that x  and E  are state variables and u , v  and e  are 
control variables; 0=(0) xx  and 0=(0)E  of course represent the known initial conditions for the 
state variables. As stated above, these constrained dynamics employ largely independent arguments 
to motivate each submodel without attending to the possible conflict that can arise among the 
submodels. As we discuss below, there are in fact fundamental identities that describe the 
relationship of link dynamics, arc delay, and flow propagation to one another, and these identities 
are needed to articulate an internally consistent dynamic network user equilibrium model when both 
arc inflows and outflows are treated as controls. 

 
 6. Cell transmission dynamics 
 
The cell transmission model is the name given by Daganzo (1994) to dynamics of the 

following form: 
 
  ( ) ( ) ( ),=1 1 tytytx jjj +−+  (14) 
 
 
  ( ) ( ) ( ) ( ) ( )[ ]{ }txtNtQtxty jjjjj −− α,,min= 1  (15) 

where t  is now a discrete time index and a unit-time step is employed. In the above, the subscript 
Cj∈  refers to a spatially discrete physical " cell" of the highway segement of interest while 

Cj ∈−1)(  refers to the cell downstream; C  is of course the set of cells needed to describe the 
highway segment of interest. Similarly to before, jx  refers to the traffic volume of cell j . 
Furthermore, jy  is the actual inflow to cell j , jQ  is the maximal rate of discharge from cell j , jN  
is the holding capacity of cell j , and α  is a parameter. Daganzo (1995) shows how eqs. (14) and 
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(15) can be extended to deal with network structures through straightforward bookkeeping. 
Note that (15) is a constraint on the variables jx  and jy . The language introduced previously 

is readily applicable to the cell transmission model; in particular (14) is arc (cell) dynamics 
(although now several dummy arcs can make up a real physical arc) and (15) is flowpropagation 
constraints. The cell transmission model also includes an implicit notion of arc delay. That notion, 
however, is somewhat subtle: namely, delay is that which occurs from traffic flowing in accordance 
with the fundamental diagram of road traffic. This is because (15), as explained by Daganzo (1994), 
is really a piecewise linear approximation of the fundamental diagram of road traffic. The 
fundamental diagram can be obtained from empirical measurement or from any of several 
hydrodynamic models of traffic flow. This feature immunizes the cell transmission model against 
potential inconsistencies among the three submodels: arc dynamics, flow propagation, and arc 
delay. 

Lo (1999) was perhaps the first to use the cell transmission model as the dynamic foundation 
for a DTA model, in our view the dynamical description (14) and (15) has yet to be successfully 
coupled with route and departure-time choice mechanisms to yield a mathematically exact model 
for dynamic network user equilibrium. A major difficulty associated with using the cell 
transmission model as a foundation for a dynamic network user equilibrium model is the fact that 
the right-hand side of (14) is non-differentiable; this means that if the path delay operators are 
nonlinear any kind of control theoretic approach will involve a nonsmooth Hamiltonian and all the 
attendant difficulties. 

 
 7. Dynamics based on arc exit-time functions 
 
Another alternative to the Merchant--Nemhauser dynamics (1) is based on the use of exit-time 

functions and their inverses. This approach, due to Friesz et al. (1993), allows one to avoid use of 
exit-flow functions and the pitfalls associated therewith. Friesz et al. (1993) employed arc exit-time 
functions and their inverses in a manner that has no antecedents in the literature on dynamic 
network modeling and is wholly original. The resulting formulation of link dynamics and of the 
dynamic network user equilibrium problem has been recognized by Adamo et al. (1998),Wu et al. 
(1998a,b), and Zhu and Marcotte (1999) as a mathematically and behaviorally sound formulation. 

To understand the exit-time function, let et  be the time at which flow exits the thi  arc of path 
p  when departure from the origin of that path has occurred at time dt . The relationship of these 

two instants of time is expressed as  

  ( ),= diae tpt τ  (16) 

and we call (p
ia

τ . )  the exit-time function for arc ia  of path p . The inverse of the exit time 

function is written as 

  ( ),= eiad tpt θ  (17) 

and describes the time of departure td from the origin of path p for flow which exits arc ia  of that 
path at time et . Consequently, the identity 

  ( )⎥⎦
⎤

⎢⎣
⎡

diaia
tppt τθ=  (18) 

must hold for all time t for which flow behavior is being modeled. The role of the exit-time function 
becomes clearer if we describe path p as the following sequence of conveniently labeled arcs: 

  ( ){ }pmiii aaaaaap ,...,,,,...,, 1121 +−  (19) 
where )(pm  is the number of arcs in path p . It then follows immediately that the total traversal 
time for path p can be articulated in terms of the final exit-time function and the departure time: 
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  ( )
( )

( ) ( ) ( ) ,==
11

1=
ttptptptD

iaiaia

pm

i
p −⎥⎦

⎤
⎢⎣
⎡ −

−−∑ τττ  (20) 

when departure from the origin of path p  is at time t . Construction of the arc dynamics begins by 
noting that arc volumes are the sum of volumes associated with individual paths using the arc: 

  ( ) ( ) Aatxtx p
aap

p
a ∈∀∑δ=  (21) 

where p
ax  denotes the volume on arc a  associated with path p  and 

  
⎩
⎨
⎧

otherwise0
athbelongstopifarc1

=
pa

apδ  (22) 

If we use the notation )(thp  for the flow entering path p  (departing from the origin of path 
p ) at time t , it is possible to express its contribution to the flow on any arc at a subsequent instant 

in time using the inverse exit-time functions defined previously. This representation takes the form 
of an integral equation that can be manipulated to yield 

  ( ) ( ) ( )[ ],1,,,=
11

pmiPptpgtpg
dt

pdx
iaia

ia ∈∈∀−
−−

 (23) 

where pg
ia 1−

 is the flow entering arc ia  (which is the same as the flow exiting arc 1−ia ) and pg
ia

 is 

the flow exiting arc ia . These entry and exit flows can be proven to obey 

  ( )
( )

( )⎥⎦
⎤

⎢⎣
⎡ tph

dt

tpd
tpg

iap
ia

ia
θ

θ
 (24) 

Note that even though (23) is remarkably similar to (7), the entrance and exit flows eq. (24) 
have been very carefully and rigorously related to departure rates (i.e., path flows) to avoid internal 
inconsistencies and flow-propagation anomalies such as instantaneous propagation. Note also that 
the dynamics (23) are intrinsically complicated, having right-hand sides that are neither explicit 
functions nor variables but rather operators that involve inverse exit-time functions. 

There is, however, a way of re-expressing the exit-time function based model of arc dynamics 
eq. (23) to obtain an alternative formulation involving constrained differential equations, 
state-dependent time lags, and arc entrance and exit flows that are control variables rather than 
operators. We will see that this alternative formulation obviates the need to explicitly know 
exit-time functions and their inverses, but nonetheless preserves all the main features of the Friesz 
et al. (1993) model of link dynamics. Illustration of these claims requires that we introduce some 
model of link delay. To this end we introduce a simple deterministic link delay model first 
suggested by Friesz et al. (1993) and named the " point queue model" by Daganzo (1995). To 
articulate this delay model, let the time to traverse arc ai for drivers who arrive at its tail node at 
time t be denoted by Da i [x t a i( )]. That is, the time to traverse arc ai is only a function of the 
number of vehicles in front of the entering vehicle at the time of entry. As a consequence, we have 

 

  ( )[ ] ,,=
11

PptxDtp
aaia

∈∀+τ  (25) 

 
 

  ( ) ( ) ( )[ ],2,,,=
11

pmiPptpDtpp
iaiaiaia

∈∈∀⎥⎦
⎤

⎢⎣
⎡+

−−
τττ  (26) 

 
By employing expressions (24), (25), and (26) together with the chain rule, as explained in 

Friesz et al. (1999), the following flow-propagation constraints are obtained: 
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  ( ),=)))(()))(1(((
111111

thxtx'DtxDtpg paaaaaa ++  (27) 

 
 

  ( ),=)))(()))(1(((
1
tpgxtx'DtxDtpg

iaiaiaiaiaiaia −
++   (28) 

where the overdot refers to a total time derivative. Expressions (27) and (28) are proper flow 
progression constraints derived in a fashion that makes them completely consistent with the chosen 
exit-time function dynamics and point queue model of arc delay. Note that these constraints involve 
a state-dependent time lag [ ])(txD

iaia
 but make no explicit reference to the exit-time functions and 

their inverses. Expressions (27) and (28) may be interpreted as describing the expansion and 
contraction of vehicle platoons or wave packets moving through various levels of congestion en 
route to their destinations. These flow propagation constraints were first pointed out by Tobin 
(1993) and presented by Friesz et al. (1995). Astarita (1995, 1996) independently proposed 
flow-propagation constraints that may be readily placed in the form of (27) and (28). 

To complete our development, we introduce some additional categories of constraints. The 
first of these are flow-conservation constraints, which we express as 

  ( ) ,,,=
0 DOijp

T

ijPp
NjNiQdtth ∈∈∀∫∑

∈

 (29) 

where ijQ  is the fixed travel demand for an origin-destination pair ),( ji  associated with the fixed 
trip matrix 

  ( ) [ ]
[ ]D
ONjij
NiQQ 1,==

1,=
 (30) 

and T  is the departure time horizon. Finally, we impose the non-negativity restrictions 
  00,0, ≥≥≥ hgx  (31) 

where x , g , and h  are the relevant vectors of state variables and control variables. We may now 
define 

  ( ) ( ) ( ) ( ){ },hold 29 and 28,27eqs.:0,,=3 ≥Λ hgx  (32) 
which is the set of state and control variables that represent physically meaningful flow 
propagation. 

As a consequence of the preceding development we can now state a third type of network 
dynamics based on proper flow propagation constraints and which is completely self-consistent: 

 

  
( )

( ) ( ) ,,=
1

1 Pptpgth
dt

tpdx
ap

a
∈∀−  (33) 

 
( )

( ) ( ) ( )[ ],2,,,=
11

pmiPptpgtpg
dt

tpdx
aia

ia ∈∈∀−
−

 (34) 

 ( ) ,,, 3Λ∈hgx  (35) 
  ( ) ,=0 0xx  (36) 

which makes clear that the link volumes px
ia

 are natural state variables while the path flows ph  and 

link entrance (exit) flows pg
ia

 are natural control variables in this formulation. 

 
 8. Dynamic user equilibrium 
 
The development of a formal model of DTA requires a precise definition of the flow state that 
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characterizes dynamic traffic networks. The most widely used characterization in the technical 
literature is the notion of dynamic user equilibrium (DUE). There are a number of measure theoretic 
subtleties associated with the description of a dynamic equilibrium. We omit these for the sake of 
brevity, but see Friesz et al. (1993) for a discussion of the formal measure theoretic definition of 
DUE. For our purposes here it suffices to say that a dynamic network user equilibrium is a flow 
state for which no group of similar travelers can elect a different departure time and choose a 
different route which will shorten the effective delay they experience. 

Each of the dynamics reviewed above may be combined with the definition of DUE to create 
a predictive dynamic traffic network model which will determine time-varying flows on all arcs and 
paths of the network. Predictive models meant to solve the DNLP and DTAP differ from one 
another primarily in the dynamics chosen and the particular mathematical formalism used to 
express DUE. Moreover, since the demonstration by Friesz et al. (1993) that DUE may be 
represented as a variational inequality, most continuous-time, continuous-choice models for the 
DNLP and the DTAP have used the variational inequality formalism to express route and departure 
choices. The way in which the variational inequality formalism is employed depends on whether 
approximate or exact notions of path delay are employed and whether the intent is to model only 
route choice (the DNLP) or route and path choice (the DTAP). 

The recursive relationships (25) and (26), when combined with the arc delay functions, lead 
after some fairly straightforward manipulations to closed-form path delay operators: 

 
  ( ) xpxtDp  conditions cfor traffi path on delay unit , ≡  (37) 

 
( )

( ),,=
1=

xtp iaia

pm

i
Φ∑δ  (38) 

where the are arc delay operators obeying 

  

)).((=

))((=),(

))((=),(

))((=),(

))((=),(

1

1=

11

21333

1222

111

ja

i

j
iaia

iaaiaiaia

aaaaa

aaaa

aaa

txD

txDxt

txDxt

txDxt

txDxt

Φ+

Φ++Φ+Φ

Φ+Φ+Φ

Φ+Φ

Φ

∑
−

−


  (39) 

Typically, a penalty  
  ],),( Ap TxtDt −+Π  

where AT  is a prescribed arrival time, is added to the path delay operator to obtain the effective unit 
path-delay operator 

  { }Appp TtxDtFxtDxt −++Ψ ),(),(=),(  (40) 
for each path p . This form of the path-delay operator was first stated by Friesz et al. (1993). 

It is now well understood that the variational inequality problem constructed from constrained 
dynamics (33) to (36) and the effective path-delay operators (40) is an exact representation of DUE 
and is, therefore, the foundation model for specific efforts to solve the DNLP and the DTAP. That 
variational inequality is 

  

( )
( ) ( ) ( ) ( )[ ]

( ) 3

0
=

3

,, allfor 

0,,,

such that ,, find

Λ∈

≥−Ψ−Ψ

Λ∈

∗∗∗∗

∗∗∗

∫∑

hgx

dtththxthhxt

hgx

ppp

T

Pp

 (41) 

where  
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  [ ]( )Ppxtxt p 1,:),(=),( ∈ΨΨ ∗∗  
Many analytical models proposed to date for solving the DNLP and the DTAP are either 

special cases or extensions of (41). The formal proof of the correctness of (41) was first given by 
Friesz et al. (1999). Several successful algorithms for variants of (41) have been developed and 
tested. See, in particular, Xu et al. (1999) and Wu et al. (1998a,b). 

 
 9. Tatonnement and projective dynamics 
 
In this section we discuss a very different kind of network dynamics which are not at all 

similar to the Merchant--Nemhauser dynamics, but rather are related to the concept of tatonnement 
from microeconomics. Classical microeconomic equilibrium models are often motivated with 
stories of an auctioneer who calls out a price, observes the potential demand and supply at that price, 
and adjusts the price upward or downward accordingly. Such tatonnement adjustment processes 
(from the French t â tonner, which means to grope or feel one's way) are not meant to describe 
reality, but are merely a convenient fiction used to motivate movements from disequilibria to 
equilibria. In general, a real or, as we say, a realizable price adjustment process must include 
mechanisms for handling the inventories (or other types of excess supply) and back-orders (or other 
types of excess demand) that often result from a market being out of equilibrium. 

However, this is not the case for traffic equilibria, since there are no inventories or 
back-orders of commuter trips. In fact, this lack of inventories and back-orders allows the 
construction of relatively simple mathematical descriptions of traffic network disequilibria. The 
realizable generalizations of the tatonnement adjustment processes reported in the economics 
literature can be applied to the study traffic network disequilibria at the level of path and arc flows, 
as first suggested by Friesz et al. (1996). As such, these models are a type of DTA model that 
describe disequilibrium traffic states and their trajectories as they adjust toward equilibrium. 

Space considerations permit us to only mention some of the salient features of this class of 
models. (A detailed discussion is given in Friesz et al. (1996). The fundamental decision variables 
are path flows (departure rates) and perceived costs. Path flows are considered to have rates of 
change proportional to excess travel cost, where excess travel cost is the difference between 
experienced travel cost and perceived travel cost. Similarly, perceived costs have rates of change 
that are proportional to excess travel demand, defined as the difference between demand and supply 
of transportation services for the experienced level of congestion. These simple concepts lead to 
network dynamics that, for appropriate regularity conditions, are asymptotically stable in the sense 
that flows tend toward either a static or a dynamic user equilibrium, depending on whether the 
time-scale employed is day-to-day or within-day. That is, the natural form of a tatonnement 
network dynamics is as a system of simultaneous differential equations; the articulation of these 
equations requires a priori a model of network user equilibrium. Because network equilibrium flows 
are constrained by nonnegativity, flow propagation and flow conservation considerations, as 
explained above, it is generally necessary to modify the tatonnement dynamics based on the rules 
described above in such a way that trajectories are deformed to obey the imposed constraints. This 
is done using the concept of a projection operator, which can be loosely defined as the mathematical 
apparatus for finding a trajectory in the feasible region that is mathematically " closest" to the 
unconstrained trajectory. The resulting projective network dynamics represent a promising 
alternative perspective for formulating and solving the DNLP and the DTAP, which allow, unlike 
the other perspectives described above, disequilibrium states to be explored. As such we expect this 
class of models to be the subject of much future research and development. 

 
 10. A Numerical Method for DUE Problems 
 
Friesz and Mookherjee (2006) have shown that the theory of infinite dimensional 

mathematical programming may be used to solve the DUE problem. Space prevents us from giving 
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a detailed treatment of that algorithm and the regularity conditions invoked to assure convergence. 
We consider the problem  
  such that  find Uu ∈∗  
 
  ( )( ) UuuutuuuuxF DD ∈≥〉−〈 ∗∗∗∗∗   allfor   0,,,,,  (42) 

where 
 
 

  
( )

( ) ( ) ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ Γ 0=,0,=,,,=,,,,=arg

=,

0
0 ffDD

D

ttxuuxGxtxtuuxf
dt
dx
uux

 (43) 

and 

( )( )
( )( )

( )( )⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+

+

mmm

D

xDtu

xDtu
xDtu

u


222

111

=  

Problem (42) is a general differential variational inequality of which the DUE problem presented 
previously is a special case. Friesz and Mookherjee (2006) have shown that an iterative fixed point 
algorithm on involving the minimum norm projection may be used to solve (42). We give (42) a 
symbolic name, ),,,,( 0 DxUfFDVI . 

 

 10.1 The Fixed Point Problem 
 
We are now in a position to state the following result. 
  
  Theorem 1 (fixed point problem) When some regularity conditions hold, any solution of the 

fixed point problem 
  ( )( )[ ],,,,,= tuuuuxFuPu DDU α−  

where [].UP  is the minimum norm projection onto ⊆U  [ ]( )mfttL ,0
2  and 1

++ℜ∈α , is also a solution 

of ),,,,( 0 DxUfFDVI t .   
 
 Naturally there is a fixed point algorithm associated with Theorem 1; that algorithm is 

summarized by the following iterative scheme: 
  ( )( )[ ]tuuuuxFuPu k

D
kk

D
kk

U
k ,,,,=1 α−+  (44) 

 The detailed structure of the fixed point algorithm is: 
 
 

 The Fixed Point Algorithm  
 
 
Step 0. Initialization. Identify an initial feasible solution Uu ∈0  and set 0=k . 
Step 1. Optimal control subproblem. Solve 

  ( ) ( )[ ] ( )[ ] dtvtuuxFutttxvJ k
D

kkkf
tff

Tk

v

2

0
,,,

2
1,=min −−+Γ ∫ αγ  (45) 

                  ( )tvvxf
dt
dx

D ,,,= subject to   (46) 
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                                  ( ) 0=,, DvvxG   (47) 
                                   Uv ∈   (48) 
                                  ( ) 0=0 xx   (49) 
 

and call the solution 1+ku . Note that in this step it is advantageous to " unfold" and explicitly state 
the constraints embedded in the operator ( )Duux ,  of statement (43) in order to facilitate 
computation. 

Step 2. Stopping test. If 
  1

1 ε≤−+ kk uu  
 

where 1
1 ++ℜ∈ε  is a preset tolerance, stop and declare 1+∗ ≈ kuu . Otherwise set 1= +kk  and go to 

Step 1. 
 

 10.2 Descent in Hilbert Space for the Projection Sub-Problems 
 
It is important to realize that the fixed point algorithm of Section 10.1 can be carried out in 

continuous time provided we employ a continuous time representation of each subproblem (45) 
through (49) from Step 1 of the fixed point algorithm. This may be done using a continuous time 
gradient projection method or a discrete time gradient projection method supplemented by spline 
approximations. For our present circumstances, that algorithm may be stated as: 

 
 

 Gradient Projection in Hilbert Space  
 
Step 0. Initialization.. Pick ( ) Utvk ∈,0  and set 0=j . 
Step 1. Finding state variables. Solve the state dynamics 

  
( )

( ) 0

,,

=0

,,,=

xx

tvvxf
dt
dx jk

D
jk

 (50)(51) 

 and call the solution 
  ( )tx jk ,  (52) 
 In the event a discrete time method is used to solve the state dynamics (50) and (51), curve 

fitting is used to obtain the continuous time state vector (52). 
Step 2. Finding adjoint variables. Solve the adjoint dynamics 

  
( )

( ) ( )[ ]
( )f

ff
jk

f

jkxx

k
x

tx
ttx

t

H
dt
d

∂

Γ∂

∇−

,
=

=1

,

,=

λ

λ

 (53)(54) 

where H  is the augmented Hamiltonian for the optimal control subproblem of the fixed point 
algorithm based on current information: 

  ( )[ ] ( ) ( )jkDjkTjk
D

jkTk
D

kkkk vvxGtvvxfvtuuxFuH ,,,,2 ,,,,,,,,
2
1= φλα ++−−  

 Call the solution 
  )(, tjkλ  (55) 
 In the event a discrete time method is used to solve the adjoint dynamics (53) and (54), curve 

fitting is used to obtain the continuous time adjoint vector (55). 
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Step 3. Finding the gradient. Determine 
  ( ) k

v
jk

v HtJ ∇≡∇ ,  
 Step 4. Stopping test. For a fixed and suitably small fixed step size 
  1

++ℜ∈kθ  
 determine 
  ( ) ( )[ ]jkvk

jk
U

jk JtvPtv ,,1, = ∇−+ θ  (56) 
 In the event a discrete time method is used to solve the above projection subproblem, curve 

fitting is used to obtain the continuous time control vector (56). 
Step 5. Stopping test. For 1

2 ++ℜ∈ε , a pre-set tolerance, stop if 
  2

,1, < εjkjk vv −+  
 and declare 
  1, +∗ ≈ jkk vv  
 Otherwise set 1= +jj  and go to Step 1. 
 
 
 Note that the above algorithm overcomes the two-point boundary value problem difficulty 

that is typically associated with the simultaneous determination of state and control variables and 
that is characteristic of optimal control problems. This is a direct result of determining controls, 
states and adjoints in a sequential manner. This sequentialness, however, is not an approximation; 
rather it is a result of the way the original DVI is represented in terms of mappings between 
appropriately defined Hilbert spaces. 

 

 10.3 Applying the Fixed Point Algorithm to the DVI Formulation 
 
In order to apply the formalism developed in Section 10.1, we make the following 

observations/assumptions: 
1. the controls are g  and h ; 

2. the state variables are the traffic volumes ( )[ ]pmiPppx
ia

1,,: ∈∈∀ ; 

3. the arc delays ( ) ( )[ ]pmiPpxD
iaia

1,,: ∈∈∀ , which appear as explicit time shifts in the 

flow propagation constraints (27) and (28); 
4. the operator ( )DD hhggx ,,,  has the properties of continuity and G-differentiability, 

where Dg  and Dh  have the obvious definitions 
 ( )( ) ( )( )xDthhxDtgg DD +≡+≡ ,  

      and of course 

 ( )[ ] ( )[ ]( )pmiPpDDpmiPppxx
iaia

1,,:,1,,: ∈∈≡⎟
⎠
⎞

⎜
⎝
⎛ ∈∈≡  

5.      ( )xD  is continuously differentiable with respect to x .  
 
 11. A Heuristic Treatment of State-Dependent Time Shifts in 

DTA Problems 
 
A DTA problem is a special case of continuous time optimal control problem. However, the 

presence of state-dependent time shifts in the proper flow progression constraints makes most 
numerical approach inapplicable. The state-dependent time shifts must and can be accommodated 
using an implicit fixed point perspective, as innovated for the dynamic user equilibrium in the 
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previous section. More specifically, in such an approach, one employs control and state information 
from a previous iteration to approximate current time shifted functions. This idea, requires very 
strong assumptions if one wishes to give a rigorous proof of convergence. Generally, for DUE 
computations, the implicit fixed point approach is a heuristic for treating flow propagation 
constraints that may be summarized as follows: 

 
1. Articulate the current approximate states (volumes) and controls (arc exit rates) by spline or 

other curve fitting techniques as continuous functions of time. 
 
2. Using the aforementioned continuous functions of time, express time shifted controls as 

pure functions of time, while leaving unshifted controls as decision functions to be updated 
within the current iteration. 

 
3. Update the states and controls, then repeat Step 2 and Step 3 until the control controls 

converge to a suitable approximate solution.  
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