
Supply Chain Design in Perfect Competition

Terry L. Friesz and Changhyun Kwon

October 5, 2007

Abstract

In this paper, we apply the theory of optimal control and theory of
tra¢ c assignment for supply chain design in perfect competition. We
model the time staging and generalized routing of input factors needed
for production by a �rm. The production process will typically involve
several stages, and as such is described by paths through a production
network whose nodes are the various stages of production. We develop an
algorithm and test it for a small numerical example.

1 Introduction

In the last two decades, productions as well as consumptions has become global,
�rms began to recognize the importance of supply chain optimization. In se-
quence, supply chain management and design has become a very important
issue both in practice and in research. Among many other methodologies to
give optimal policy to manage supply chain, mathematical modeling and analy-
sis of supply chain is of particular interest in scienti�c communities: see Beamon
(1998), Min and Zhou (2002) and references therein.
In this paper, we apply the theory of optimal control (see Bryson and Ho,

1975) and theory of tra¢ c assignment (see Friesz and Mookherjee, 2006) to a
supply chain design problem. For the applications of optimal control theory
in management problems, see Bensoussan et al. (1974) and Sethi and Thomp-
son (2000) for the general introduction and see Ortega and Lin (2004) for an
extensive survey. We model the time staging and generalized routing of input
factors needed for production by a �rm. To do so, we will employ a supply
network which is connected to the production process of the �rm of interest
at supply-intake nodes. For the supply network, origin nodes are the sources
of factor supplies while destination nodes represent the location in time and
space at which factors enter the production process. The production process
will typically involve several stages, and as such is described by paths through
a production network whose nodes are the various stages of production. Al-
though this perspective is reminiscent of the well known critical path method,
it is substantially more general. We assume that the supply-production network
just described has associated demands for �nished goods that compel produc-
tion activity that in turn compels the formation of supply chains within the
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supply subnetwork. Of course the supply and production processes we con-
sider are dynamic. Kachani and Perakis (2002) describe a �uid model of the
dynamic pricing and inventory management for make-to-stock manufacturing
systems considering the fact that a unit of a product incurs a delay before being
sold and that delay is similar to the travel times incurred in a transportation
network. This same perspective is employed in this paper.
The main contributions of this paper is summarized as follows:

1. It studies supply chain as a network that uni�es physical transportation
and pre-processing stages.

2. It provides a mathematical model that fully describes the dynamics of
�ows of input factors.

3. It develops a computational method that solves the model in continuous-
time and tests it for a small example.

The remainder of this paper is organized as follows. In Section 2, we begin
our discussion by introducing notations for supply chain. We introduce dynam-
ics and constraints essential in supply chain design in Section 3 adopting the
theory of tra¢ c assignment, in particular, the model in Friesz and Mookherjee
(2006). Section 4 discusses the speci�c �rm of our interest in this paper and give
the �nal formulation for optimal supply chain design. We develop an algorithm
in Section 5 and test it for a small numerical example in Section 6. Finally we
conclude this paper in Section 7.

2 Notation for the Supply Network

We will be treating the time varying �ows of production factors over a network
associated with the graph G (N ;A) where N is the relevant set of nodes and A
is the relevant set of arcs. To model such �ows, we take a path p 2 Pk of the
supply network to be a sequence of arcs labeled as follows:

p
:
=
�
a1; a2; :::; ai�1; ai; ai+1; :::; am(p)

	
where Pk is the set of all paths associated with the supply of production factor
k 2 K and K is the set of all production factors.
It will also be expedient to let Pkij denote the set of paths for movement of

factor k 2 K between supply-intake pair (i; j) 2 Wk
s . The set of all supply-

intake pairs pertinent to factor k 2 K is Wk
s . For a given path, p 2 Pkij , the tail

node of arc a1 is the source of factor k 2 K, while the head node of arc am(p) is
the location to which that same factor is delivered to the producing �rm.
We denote the set of supply origin nodes by N k

O and the set destination
(intake) nodes by N k

D. Each arc traversed on the way between (i; j) 2 W k
s

represents either physical transportation or required pre-processing of factor
k 2 K originating at node i 2 N k

O prior to delivery at intake node j 2 N k
D.
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We also let �pkai be the time of exit of �ow from arc ai 2 p given shipment of
factor k 2 K at time t via path p 2 Pk. Furthermore we take

�aip =

�
1 if ai 2 p
0 if ai =2 p

to be an element of the arc-path incidence matrix.

3 Supply Network Dynamics and Constraints

The relevant arc dynamics for factors supplied to the sole producer are

dxpkai (t)

dt
= gpkai�1 (t)� g

pk
ai (t) 8k 2 K; p 2 Pk; i 2 [1;m (p)] (1)

xpkai (0) = x
pk
ai;0

8k 2 K; p 2 Pk; i 2 [1;m (p)] (2)

where xpkai is the volume of factor k on arc ai, g
pk
ai is �ow of that factor exiting

arc ai and gpkai�1 is �ow the same factor entering arc ai of path p 2 P
k. Also,

gpka0 is the �ow exiting the origin of path p; by convention we call this the �ow
of factor k on path p. Furthermore

xa (t) =
X
k2K

X
p2Pk

�apx
pk
a (t) 8a 2 A (3)

is the total arc volume1 .
Of course total path traversal time is

Ckp (t) =

m(p)X
i=1

h
�pkai (t)� �

pk
ai�1 (t)

i
= �pkam(p)

(t)� t 8k 2 K,p 2 Pk

since we use the convention that

�pk0 (t) = t

It will prove expedient to introduce the following recursive relationships that
must hold in light of the above development:

�pka1 = t+Da1 (t) 8k 2 K; p 2 Pk

�pkai (t) = �
pk
ai�1 (t) +Dai(�

p
ai�1) 8k 2 K; p 2 Pk; i 2 [2;m (p)]

where Dai (t) for i 2 [1;m (p)] is the traversal time for an arbitrary supply
network arc ai 2 p 2 Pk. The dependence of arc traversal time on clock time t

1 In expression (3) we assume that all factor �ows are in comensurable units, such as pounds
per second. However, it is not di¢ cult to relax this assumption and use explicit factor weights
to convert factor �ows to common units of measurement.
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re�ects the �uctuations of resources needed for transportation or preprocessing
factors as they migrate through the supply network. We may easily ensure that
a �rst-in-�rst out queue discipline is enforced by imposing the constraint

d

dt
[t+Dai (t)] = 1 +

d

dt
Dai (t) > 0

for an arbitrary supply network arc ai 2 p 2 Pk. This constraint assures
that each exit time function is strictly monotonically increasing during periods
when �ow is strictly positive. Furthermore, physical reality and elementary
manipulations based on the chain rule lead to the following �ow propagation
constraints:

gpkai (t+Dai [xai (t)])

�
1 +

d

dt
Dai [xai (t)]

�
= gpkai�1 (t) 8k 2 K; p 2 Pk; i 2 [0;m (p)]

(4)
These are proper �ow propagation constraints derived in a fashion that makes
them completely consistent with the chosen arc dynamics and model of arc delay.
These constraints clearly involve time-dependent time shifts Dk

ai (t) for each
supply network arc ai 2 p 2 Pk.
To discourage the early/late arrival factors of production and thereby ensure

realistic behavior, we employ asymmetric early/late arrival penalties

�kp
�
t+ Ckp (x; t)� �k

�
(5)

where �k is the desired arrival time for p 2 Pk. Early arrival penalties may
re�ect inventory costs induced by early arrivals of input factors, and late arrival
penalties may be incurred by missing the deadline of productions. We also de�ne
a unit delivery fee rkij (t) for each supplier/intake pair for each k 2 K; i 2 N k

O;

j 2 N k
D and t 2 [0; T ]. De�ning that vk is the economic value of time for factor

k 2 K, we combine the delivery cost, actual path delays and arrival penalties to
obtain

	kp (t) =
X
i2Nk

O

j2Nk
D

rkij(t) + vk
�
Ckp (t) + �

k
p

�
t+ Ckp (t)� �k

�	
8k 2 K; p 2 Pk

which we call the e¤ective path cost operators. If we de�ne

Ekp (t) � t+ Ckp (t)� �k
The function

�kp
�
t+ Ckp (t)� �k

�
=
�kp
2

�
Ekp (t)

�2
,

when �kp 2 <1++, is an example of a symmetric arrival penalty for p 2 Pk. An
example of an asymmetric arrival penalty is

�kp
�
t+ Ckp (t)� �k

�
=

8><>:
�kp
2

�
Ekp (t)

�2
if Ekp > 0

�kp
2

�
Ekp (t)

�2
if Ekp < 0

4



where �kp 2 <1++ and
�kp > �

k
p

for for p 2 Pk.
We also note that �ow conservation requires

X
p2Pk

ij

Z T

0

gpkam(p)
(t) dt = Qkij 8k 2 K; i 2 N k

O; j 2 N k
D (6)

where Qk is the producer�s demand for factor k 2 K to arrive during the time
interval [0; T ]. Note that T is not the desired arrival time, but rather a time
beyond which delivery is not contemplated. The desired arrival time for factor
k 2 K is, as we have stated above, �k < T . Arrival before or after �k will
generally occur only if feasibility or cost considerations require so, as there is a
strictly positive penalty (5) for missing the targeted delivery time. We further
note that the two point boundary value problem

dykij
dt

=
X
p2Pij

gpkam(p)
8k 2 K; i 2 N k

O; j 2 N k
D (7)

ykij (0) = 0 8k 2 K; i 2 N k
O; j 2 N k

D (8)

ykij (T ) = Q
k
ij 8k 2 K; i 2 N k

O; j 2 N k
D

is equivalent to (6).
Naturally we suppose that there are �xed upper bounds on factor exit rates

and nonnegativity restrictions for the both factor volumes and factor exit rates;
that is

x � 0 G � g � 0 (9)

where

x �
�
xpkai : k 2 K; p 2 P

k; i 2 [1;m (p)]
�

(10)

g �
�
gpkai : k 2 K; p 2 P

k; i 2 [0;m (p)]
�

(11)

G =
�
Gpkai : k 2 K; p 2 P

k; i 2 [0;m (p)]
�

(12)

We will shortly employ the related vector notation

y =
�
ykij : k 2 K; i 2 N k

O; j 2 N k
D

�
Q =

�
Qkij : k 2 K; i 2 N k

O; j 2 N k
D

�
We will also use the notation

x0 =
�
xpkai;0(0) : k 2 K; p 2 P

k; i 2 [1;m (p)]
�

to refer to the vector of initial state values. We may now de�ne
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 = fg � 0 :; (4) and (9) holdg (13)

which is the set of control variables that represent physically meaningful factor
supply �ows.
As a consequence of the preceding notation and development, we may state

the constrained dynamics for our supply network model as:

dxpkai (t)

dt
= gpkai�1 (t)� g

pk
ai (t) 8 k 2 K; p 2 Pk; i 2 [1;m (p)] (14)

dykij
dt

=
X
p2Pij

gpkam(p)
8k 2 K; i 2 N k

O; j 2 N k
D (15)

g 2 
 (16)

x (0) = x0 (17)

y (0) = 0 (18)

y (T ) = Q (19)

which makes clear that the link volumes xpkai are natural state variables while the
link entrance (exit) �ows gpkai are natural control variables in our formulation.

4 The Firm of Interest

The producing �rm serviced by our supply network seeks to maximize the net
present value of its pro�ts. We will need the following additional assumptions
and de�nitions to model the producing �rm:

1. there is perfect competition in the markets for each factor k 2 K, so the
producing �rm of interest is an aspatial price taker with respect to the
price of each factor k 2 K, namely �k (t);

2. there is also perfect competition in the markets for output product, so the
producing �rm of interest is an aspatial price taker with respect to the
price of output product, namely � (t);

3. there are never any shortages of input factors;

4. the total demand rate for factor k 2 K is endogenous and denoted by
fk(t), while

f =
�
fk : k 2 K; p 2 Pk

�
is the vector of factor demand rates;

5. the factor demand rates obey the simple �ow conservation constraints

fk(t) =
X
p2Pk

gpkam(p)
(t)

for all k 2 K;
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6. the producing �rm�s production function is

F (f)

which determines the output rate for each vector f of input factor rates;

7. the production cost of the �rm is

V (F )

which is the cost needed to produce the output product by the amount of
F (f); and

8. for simplicity we assume the �rm of interest holds no inventory and accepts
no backorders2 .

The �rm�s net present value of pro�ts, using the notation introduced above,
takes the form

Z T

0

e��t

24� (t)F (f)�X
k2K

�k (t) fk(t)� V (F )�
X
k2K

X
p2Pk

	kpg
p
am(p)

(t)

35 dt
(20)

where each term represents:

� (t)F (f) : revenue generated by sales of �nal productsX
k2K

�k (t) fk(t) : costs for the purchase of input factors

V (F ) : production costsX
k2K

X
p2Pk

	kpg
p
am(p)

(t) : supply chain path costs

The �rm of our interest wants to maximize (20), hence the �nal formulation is:

max J (g) =

Z T

0

e��t

"
� (t)F (f)�

X
k2K

�k (t) fk(t)

�V (F )�
X
k2K

X
p2Pk

	kpg
p
am(p)

(t)

35 dt (21)

subject to

dxpkai (t)

dt
= gpkai�1 (t)� g

pk
ai (t) 8 k 2 K; p 2 Pk; i 2 [1;m (p)] (22)

2Although we assume no inventory and no backorders, we can easily extend it by the same
dynamics in Friesz et al. (2006).
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dykij
dt

=
X
p2Pij

gpkam(p)
8 k 2 K; i 2 N k

O; j 2 N k
D (23)

g 2 
; x (0) = x0; y (0) = 0; y (T ) = Q (24)

where � > 0 is the discount rate. We should note that the problem (21)-(24)
is an optimal control problem with time-lags in the objective function and the
state dynamics. Hence, the standard analysis of optimal control problems can
not be directly used. In the next section, we provide the necessary conditions
for such problems.

4.1 The Optimal Control Problem with Time-Lags

Prior to the development of an algorithm for solving the problem (21)-(24), we
need to study necessary conditions and the gradient. We consider the following
abstract optimal control problem:

min� [x (tf ) ; tf ] +

Z tf

t0

F (x; u; uD; t)dt (25)

subject to

dx

dt
= f (x; u; uD; t) ; x (t0) = x

0 (26)

u 2 U (27)

This is a non-standard optimal control problem, and we will need its necessary
conditions. In fact we will state the following result without proof (see Friesz,
2007) :

Theorem 1 (Necessary Conditions for Optimal Control with State-Dependent
Time Shifts) Suppose the following conditions hold:

(i) u 2 U �
�
L2 [t0; � ]

�m
;

(ii) uD 2
�
L2 [t0; tf ]

�m
;

(iii) the operator x (u; uD; t) :
�
L2 [t0; tf ]

�m � �L2 [t0; � ]�m �!
�
H1

1 [t0; tf ]
�n

is
�
x0; U;�

�
-regular, continuous and G-di¤erentiable3 with respect to u

and uD;

(iv) Di (xi) :
�
H1 [t0; tf ]

�n �! H1 [t0; tf ] is continuously di¤erentiable with
respect to xi for each i 2 [1;m];

(v) � [x; t] :
�
H1 [t0; tf ]

�n�<1+ �! H1 [t0; tf ] is continuously di¤erentiable with
respect to x;

3A reader unfamiliar with the concept of Gateaux- or G- di¤erentiability refers to Lu-
enberger (1969), Minoux (1986) and Jahn (1996). All other di¤erentials in this paper are
G-di¤erentials.
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(vi) F (x; u; uD; t) :
�
H1 [t0; tf ]

�n��L2 [t0; � ]�m��L2 [t0; � ]�m�<1+ �! L2 [t0; tf ]
is continuously di¤erentiable with respect to x, u and uD;

(vii) f (x; u; uD; t) :
�
H1 [t0; tf ]

�n��L2 [t0; � ]�m��L2 [t0; � ]�m�<1+ �! �
L2 [t0; tf ]

�n
is continuously di¤erentiable with respect to x, u and uD;

(viii) U �
�
L2 [t0; � ]

�m
is convex and compact; and

(ix) x0 2 <n,

Then any solution u� 2 U of the optimal control problem (25) through (27)
obeys the following necessary conditions:
1. the �nite dimensional variational inequality principle:

mX
i=1

@H�
1

@ui
(ui � u�i ) � 0 8t 2 [t0; Di (x (t0))] ; u 2 U

mX
i=1

8><>:@H
�
1

@ui
+

24 @H�
1

@ (uD)i

1

1 +
Pm

j=1
@Di(x�)
@xj

dx�j
dt

35
si(t)

9>=>; (ui � u�i ) � 0
8t 2 [Di (x� (t0)) ; tf +Di (x� (tf ))] ; u 2 U

where si (t) = arg [s = t�Di (x (s))] 8t 2 [Di (x� (t0)) ; tf +Di (x� (tf ))] ; i 2
[1;m] and H�

1 = H1 (x
�; u�; u�D; �

�; t) = F (x�; u�; u�D; t) + (�
�)
T
f (x�; u�; u�D; t)

8t 2 [t0; tf ];
2. the state dynamics

dx�

dt
= f (x�; u�; u�D; t) ; x

� (t0) = x
0; and

3. the adjoint dynamics

(�1) d�
�

dt
= rx (��)T f (x�; u�; u�D; t) ; �� (tf ) =

@� [x� (tf ) ; tf ]

@x
.

The following result from Friesz (2007) is also important:

Corollary 2 (Gradient of the Criterion in the Presence of Time Shifts) When
the conditions in Theorem 1 hold, the gradient of the criterion (25) is de�ned
by

[rJ (u)]i =

8><>:
@H1

@ui
if t 2 [t0; Di (xi (t0))]

@H1

@ui
+

"
@H1

@(uD)i

1

1+
Pm

j=1
@Di(x)

@xj

�
xj

#
si(t)

if t 2 [Di (x� (t0)) ; tf +Di (x� (tf ))]

for i = [1;m].

We develop a numerical method in the next section based on Theorem 1 and
Corollary 2.
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5 Descent in Hilbert Space with a PenaltyMethod

We further note that the problem (21)-(24) is an instance of optimal control
problems with state dependent time shifts articulated as follows:

min J =

Z tf

t0

F (x; u; uD; t)dt (28)

subject to

x(u; uD; t) 2 


=

�
x :

dx

dt
= f(x; u; uD; t); x(0) = 0;�(x(tf ); tf ) = 0; G(x; u; uD; t) = 0; x � 0

�
2 (H1[t0; tf ])

n

Before we apply descent in Hilbert space method to (28), we penalize the equal-
ity constraints, the terminal conditions and the non-negativity constraints as
follows:

min J =
1

2

X
i

�i(�i(x(tf ); tf ))
2 +

Z tf

t0

F (x; u; uD; t)dt

+
1

2

Z tf

t0

X
i

�imin(0; xi)
2dt+

1

2

Z tf

t0

X
i

�i(Gi(x; u; uD; t))
2dt

subject to

x(u; uD; t) 2 ~
 =
�
x :

dx

dt
= f(x; u; uD; t); x(0) = x0

�
2 (H1[t0; tf ])

n;

where �i; �i and �i are increasing sequences.
This problem can be solved using a continuous time gradient projection

method or a discrete time gradient projection method supplemented by spline
approximations. For the penalized problem, the algorithm can be stated as
following:

� Step 0. Initialization. Pick uk(t) 2 U and set k = 0.

� Step 1. Finding state variables. Solve the state dynamics

dx

dt
= f(x; uk; ukD; t) (29)

x(0) = x0 (30)

and call the solution xk(t).
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� Step 2. Finding adjoint variables. Solve the adjoint dynamics

�d�
dt
= rxHkjx=xk (31)

�(tf ) =
@�(xk(tf ); tf )

@x(tf )
(32)

where H is the Hamiltonian for the penalized optimal control problem
based on current information:

Hk = F (xk; uk; ukD; t) +
1

2

X
i

�ki min(0; x
k
i )
2

+
1

2

X
i

�ki (Gi(x
k; uk; ukD; t))

2 + �T f(xk; uk; ukD; t)

Call the solution �k(t).

� Step 3. Finding the gradient. Determine

ruJk(t)

based on Corollary 2.

� Step 4. Updating the current control. For a suitably small step size

�k 2 R1++

determine
uk(t) = PU [u

k(t)� �kruJk]

� Step 5. Stopping Test. For � 2 R1++, a preset tolerance, stop if

jjuk+1 � ukjj < �

and declare
u� � uk+1

Otherwise set k = k + 1 and go to Step1.

In the following section, we provide a numerical example solved by the above
algorithm.

6 A Numerical Example

As an illustration of the mathematical formulation (21)-(24) for supply chain
design, let us consider the �rm with two input factors for an output product on
a 4 nodes and 3 arcs network presented in Figure ??:
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4-node, 3-arc network

Let us assume input factor k1 is supplied through node 1, 3 and 4, and input
factor k2 is supplied through node 2, 3 and 4. That is,

Pk1 = fp1g; p1 = fa1; a3; a4g
Pk2 = fp2g; p2 = fa2; a3; a4g

We consider the time horizon of [0; T ] = [0; 10] and the �rm need each factor
delivered by

�1 $ �k1 = 7
�2 $ �k2 = 9

The �rm�s demand for each input factor is

Q1 $ Qk11;4 = 15
Q2 $ Qk22;4 = 10

The price of each factor is

�1 $ �k1 = 10 exp
�
t

20

�
�2 $ �k2 = 5 exp

�
t

10

�
and the price of output product is

�(t) = 30 exp

�
t

15

�
Let the production function

F (f) = f1 + 2f2

f1 $ fk1
f2 $ fk2
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and the production cost function

V (F ) =
1

10
F 2 =

1

10

�
f21 + 4f1f2 + 4f

2
2

�
We rewrite the arc �ow at each arc at each path

x1 $ xa1 = xp1;k1a1

x2 $ xa2 = xp2;k2a2

x31 $ xp1;k1a3

x32 $ xp2;k2a3

x3 $ xa3 = x31 + x32

and the arc delay at each arc

D1 $ Da1 = 1 +
x1
10

D2 $ Da2 = 2 +
x2
15

D3 $ Da3 = 1 +
x3
20

The delivery fee at each O-D pair is

r1 $ r12 = 2
r2 $ r23 = 1
r3 $ r34 = 3

and the time value of each factor is

v1 $ vk1 = 2
v2 $ vk2 = 1

Then the total transversal time is

C1 $ Ck1p1 = D1 +D3 = 2 +
x1
10
+
x3
20

C2 $ Ck2p2 = D2 +D3 = 3 +
x2
15
+
x3
20

Let us de�ne the symmetric early/late penalty function

�1 [t+ C1 � �1] $ �k1p1
�
t+ Ck1p1 (t)� �k1

�
=
1

5

�
t+ 2 +

x1
10
+
x3
20
� �1

�2
�2 [t+ C2 � �2] $ �k2p2

�
t+ Ck2p2 (t)� �k2

�
=
1

5

�
t+ 3 +

x2
15
+
x3
20
� �2

�2
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Then we have the e¤ective delay operator

	1(t) $ 	p1k1(t) = r1 + r3 + v1
n
2 +

x1
10
+
x3
20

+
1

5

�
t+ 2 +

x1
10
+
x3
20
� �1

�2�
	2(t) $ 	p2k2(t) = r2 + r3 + v2

n
3 +

x2
15
+
x3
20

+
1

5

�
t+ 3 +

x2
15
+
x3
20
� �2

�2�
For the simplicity, we re-write the each �ow rate and its upper bound are

g1 $ gp1k1a1�1 � G1 = 10
g2 $ gp1k1a1 � G2 = 10
g3 $ gp1k1a3 � G3 = 10
h1 $ gp2k2a2�1 � H1 = 10
h2 $ gp2k2a2 � H2 = 10
h3 $ gp2k2a3 � H3 = 10

Then the input factor to production process is

f1 = g3

f2 = h3

and the problem becomes

max J =

Z T

0

e��t [� (t)F (g3; h3)� �1 (t) g3(t)� �2 (t)h3(t)

�V (g3; h3)�	1g3 (t)�	2h3 (t)] dt

subject to

dx1
dt

= g1 � g2
dx2
dt

= h1 � h2
dx3
dt

= g2 + h2 � g3 � h3
dy1
dt

= g3

dy2
dt

= h3
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Figure 1: Optimal Supply Chain Design

g1 (t+D1 (x1))

�
1 +

d

dt
D1 (t)

�
= g2 (t)

g2 (t+D3 (x3))

�
1 +

d

dt
D3 (t)

�
= g3 (t)

h1 (t+D2 (x2))

�
1 +

d

dt
D2 (t)

�
= h2 (t)

h2 (t+D3 (x3))

�
1 +

d

dt
D3 (t)

�
= h3 (t)

0 � gi � Gi; 0 � hi � Hi i = 1; 2; 3

x1 (0) = x2(0) = x3(0) = 0

y1 (0) = y2(0) = 0

y1 (T ) = Q1

y2(T ) = Q2

This problem is solved by MATLAB 7.0 in a generic personal computer with
Intel Pentium 4 CPU 2.80 GHz and 2.00 GB of RAM. The result is shown in
Figure 1, which shows the �ow propagation of input factors over the supply
chain network and accumulation of input factors.

7 Concluding Remarks

We have developed a mathematical formulation for optimal supply chain design
considering time-lags among supply posts which may represent either physical
transportation or pre-processing of input factors. The model was an instance of
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optimal control problems, in particular, with state-dependent time-lags. Based
on the necessary conditions and the gradient information for such problems,
we developed a numerical algorithm for solving optimal supply chain design
problems, which is tested by a simple numerical example.
While this paper takes an important step to develop and analyze a continuous-

time mathematical model adopting the theory of tra¢ c assignment, further
research must be conducted to resolve practical issues such as the curse of di-
mensionality on large-scale supply chain networks. In addition, topics of uncer-
tainty including robustness of solution and disruption management will extend
this paper.
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