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Abstract

In this paper we summarize a dual-time scale formulation of dynamic
user equilibrium with demand growth due to Friesz et al (2008). This for-
mulation belongs to the problem class that Pang and Stewart (2008) refer
to as differential variational inequalities. We also present a fixed point
algorithm for computing solutions to the dual time-scale model without
calculating derivatives, along with a numerical example.

Keywords: dynamic user equilibrium, differential variational inequali-
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1 Introduction

This paper presents in summary form one type of dynamic traffic assignment
known as dynamic user equilibrium (DUE). Our model recognizes tactical rout-
ing and departure time decisions are made in continuous time (the within-day
time scale) while demand evolves in discrete time (the day-to-day time scale)
and that the two time scales are coupled. Our dual time-scale formulation of dy-
namic user equilibrium with demand growth belongs to the problem class known
as differential variational inequalities, according to terminology introduced by
Pang and Stewart (2008).

Friesz et al. (1993) introduced the notion of exit time functions together
with a variational inequality to describe dynamic user equilibrium; that model
is consistent with FIFO for appropriate arc delay functions, even though explicit
flow propagation constraints are not employed. In particular, they introduce a
function &} (f) that expresses the time of exit from arc a; of every path

p= {al,ag, ...,ai,l,ai,aiﬂ,...7am(p)} epP, (1)

where P is the set of all network paths. The exit time functions obey the
recursive relationships
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where Dy, [z4, (t)] is the time to traverse arc a;; it is a function of the number
of vehicles z,, in front of the entering vehicle at the time of entry. This model
of arc delay is frequently called the point queue model. The arc exit time may
be used to express the path delay

m(p)
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Friesz et al. (1993) also gave the first continuous time articulation of flow
conservation based on a fixed within-day trip matrix:

T
> /0 hpdt = Qij Y (i,5) €W (4)
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where W is the set of all origin-destination pairs, P;; is the set of paths con-
necting (7, j) € W and h,, is the departure rate from the origin of path p € P;;,
while Q;; is the travel demand between (i,7) € W and [0,7] € R} is the con-
tinuous time interval representing a single day or commuting period of interest.
They used (2) and (3) together with dynamics expressed as integral equations
involving inverse exit time functions to define an effective path delay operator.
That operator, in turn, was used with (4) and non-negativity restrictions to
construct an infinite dimensional variational inequality whose solutions are dy-
namic user equilibria; their formulation is the first expression of dynamic user
equilibrium as a a variational inequality. Subsequently, Wu et al. (1998) and
Xu et al. (1999) developed algorithms for the Friesz et al. (1993) model. In par-
ticular they studied the use of the projected gradient method and solved some
modest size test problems, but did not provide useful convergence results. Zhu
and Marcotte (2000) prove the existence of solutions to the Friesz et al. (1993)
model when departure rates are stipulated to be bounded from above. More
recently, Bliemer and Bovy (2003) have extended the Friesz et al. (1993) formu-
lation by introducing multiple user classes, thereby creating a quasi-variational
inequality.

Friesz et al. (2001) employed path delays computed from (2) and (3) with
dynamics
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where 27 is the volume of traffic on arc a; of path p for i € [1,m (p)] and
gk (t) denotes the flow exiting that same arc, to formulate the dynamic user
equilibrium problem as a differential variational inequality that is completely
equivalent to the Friesz et al. (1993) infinite dimensional variational inequality



formulation. Friesz et al. (2001) included in their formulation the flow propa-
gation constraints

Gas (t+ Dy 20, (O]) (1+ Dl [0, (D] @0, ) = By (1) (7)
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which are identical to those proposed by Astarita (1995) and which include con-
sideration of expanding/contracting platoons of vehicles. Friesz and Mookherjee
(2006) propose and test a fixed point algorithm implemented in continuous time
to solve the differential variational inequality formulation of Friesz et al. (2001);
that algorithm requires monotonic path delay operators to assure convergence
and, hence, is a heuristic in practice.

The paper by Li et al. (2000) is one of several that uses the Friesz et al. (1993)
recursive equations (2) and (3) that are based on exit time functions along with
the flow propagation constraints (7) and (8) to express path delay and assure
physically meaningful flow. They express the DUE conditions in discrete time
and show it is equivalent to a finite dimensional variational inequality. They
offer an ad hoc algorithm without discussing convergence.

2 The Within-Day Differential Variational In-
equality Formulation

We will, for the time being, assume the time interval of analysis is a single
commuting period
[to, t5] C R

where ty > tg. The most crucial ingredient of a dynamic user equilibrium model
is the path delay operator, which provides the delay on any path p per unit of
flow departing from the origin of that path; it is denoted by

D,(t,h) VpeP 9)

where P is the set of all paths employed by travelers, ¢ denotes departure
time, and h is a vector of departure rates. From these we construct effec-
tive unit path delay operators ¥, (¢, h) by adding the so-called schedule delay
F [t + Dy(t,h) — T4]; that is

U, (t,h) = Dy(t,h) + F [t + D,(t,h) —Ta] VpeP (10)

where T4 is the desired arrival time and T4 < ty. The function F (-) assesses a
penalty whenever
L+ Dyt h) £ Ta (11)

since t + D, (t,h) is the clock time at which departing traffic arrives at the
destination of path p € P. The path delay operators may be obtained from



an embedded delay model, data combined with response surface methodology,
or data combined with inverse modeling. Unfortunately, regardless of how de-
rived, realistic path delay operators do not possess the desirable property of
monotonicity; they may also be non-differentiable. We will have more to say
about path delays when we discuss dynamic network loading in Section 4.

For the time being, there will be a fixed trip matrix

Q= (Qij: (i,5) € W)

where each @;; € R}, is the fixed travel demand, expressed as a volume, be-
tween origin-destination pair (7, 7) € W and W is the set of all origin-destination
pairs. Additionally, we will define the set P;; to be the subset of paths that con-
nect origin-destination pair (i, j) € WW. We denote the space of square integrable
functions for the real interval [to,ts] by L? [to,t¢]. We stipulate that

he (L2 o, )"

We write the flow conservation constraints as

Z /fhp(t)dt:Qij V(i j)eWw (12)
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where (12) is comprised of Lebesgue integrals. We define the set of feasible flows
by

i . ) 7]
Ag=Sh>0:>" hp () dt = Qi; ¥ (i,5) € W p C (L% [to, ty])
PEPij to
(13)
Let us also define the infimum of effective travel delays
vi; = essinf [Wy(t,h) :p € Pyl  Y(i,5) €W (14)

We now offer the following definition of dynamic user equilibrium first articu-
lated by Friesz et al. (1993):

Definition 1 Dynamic user equilibrium. A wvector of departure rates (path
flows) h* € Ay is a dynamic user equilibrium if

hy (t) > 0,p € Py = U, [t, h" (t)] = v (15)
We denote this equilibrium by DUE (¥, Ao, [to,t5]).

The meaning of Definition 1 is clear: positive departure rates at a particular
time along a particular path must coincide with least effective travel delay. An
implication of the definition is that

\I/P(ta h*) > Vi, P € Pij = h; =0 (16)



Using measure theoretic arguments, Friesz et al. (1993) established that a dy-
namic user equilibrium is equivalent to the following variational inequality under
suitable regularity conditions:

find h* € Ag such that

ty

Zpep \Ilp(t7 h*)(hp - hp)dt >0 (17)
t
" Whe A,

It is not widely understood, however, that (17) is equivalent to a differential
variational inequality. This is formally established in Friesz et al. (2008) who
note that the flow conservation constraints may be replaced by a two point
boundary value problem. In particular, (17) may be expressed as

find h* € A such that
ty

Zpep U, (t, h*)(hp — hp)dt >0 » DVI(¥, A, [to,t5]) (18)
to
Vh € A

where

A= dhz0: W5 oSS 0), i) = 0,y (1) = Q V(i) €W
peP”
(19)
Using appropriate optimality conditions from the theory of optimal control to
analyze differential variational inequality (18) and (19), Friesz et al. (2008)
establish the following result:

Theorem 1 Dynamic user equilibrium equivalent to a differential variational
inequality. Assume W, (-, h) : [to,tf] — R is measurable and strictly positive
for allp € P and all h € A. A vector of departure rates (path flows) h* € A is a
dynamic user equilibrium if and only if h* solves DVI(U, A, [to,tr]), as defined

by (18).

3 The Dual Time Scale Model

Let
TeT={1,2,..,N}

be one typical discrete day and take the length of each day to be A, while
the continuous clock time within each day reads ¢ € [(7 — 1) A,7A] for all
7 €{1,2,...,N}. The entire planning horizon spans N consecutive days. Let us
suppose we have a demand growth model of the abstract form

QL™ = Fiy (Qr R, hT50)
V(i,j)eW, Te{l,2,..N -1}  (20)



> 0 VY(i,j)eWw, re{2,.., N} (21)

ij =

L= KyjeRL V(@ j)ew (22)
where
ij = origin-destination travel demand V (i,5) € W, 7 € {1,2,..., N}
QT = (QL:Gj)ewW)
Q = (Q:7€T)
K;; = aknown, non-negative constant V (¢, j) € W
h = (h; 'pE 79)
h = (B :7eT)
@ = a vector of model parameters

Note the change in notation: now h is a tuple of daily flow vectors h™ rather
than merely a vector of flows for one representative day. Also we define

T-A
A2(QT)={h">0: Z/ ho(t)dt=Q V(i,j)eW
PEPi; (r—1)-A

which is of course equivalent to

A (QT) =
{ KT >0 dy;;/dt = ZpeP,'j hp (), yij [(T—1)-A]l =0, y;; (1-A) = i }
Y (i,j) e W
We note that
AQT) € (L2 [r- A, (r—1)- &))"
and also define N
2@ = T A(@) (23)

A dual time scale model of dynamic user equilibrium with endogenous demand
growth is

find Q* > 0 and h* € A (Q*) such that

T-A
> pep U, (¢, k™) (T — h7*) dt > 0 V7€ T,h7 € A, (Q7*)
(r—1)-A

QZTJ%L* =Fi; (Q7F, h™ h™= 1 L W 0) V(i) e W, T €{1,2,..,N -1}

1%
ij

=K;; V(,j)ew
(24)




The dual time scale model (24) may be solved by time stepping, so that exactly
one continuous time variational inequality is faced for each day 7. To understand
why time-stepping works for (24), note that when 7 = 1 we know each Q}]’-* = K;;
so that we also know

QY = (Kij: (i,j) € W)
Thus, we face the well-defined problem of finding h*! € A; (Ql*) such that

Z/ t.h™) (hy = h3)dt >0 Vh' € Ay (QY) (25)

pEP

The solution of (25) allows us, using the day-to-day demand dynamics, to com-
pute

=i QI h0) V(i) ew (26)
and thereby determine the vector Q2*, setting the stage for solving the next
within-day differential variational inequality to find h?*. This process, known
as time-stepping, leads us eventually to a complete solution of (24). It also
focuses attention on the need for an algorithm to solve the continuous time
differential variational inequality faced for each value of 7.

As an example of dynamics governing the evolution of travel demand, one
may postulate that, for each day 7, the travel demands Q7; between each given
origin-destination pair are determined by the following system of difference equa-
tions:

+
> Z/ (t,h7*) dt
T T g7 JPEPE = DA v
Qij - 1] 81] |,P1]‘ A X'LJ
V(i,5) e W, T €{1,2,...,L —1¥27)
with boundary conditions
zlj = Ki; (28)

where K;; € RL is the fixed travel demand for the OD pair (i,j) € W for the
first day and x;; is the so-called fitness level. The operator [z]* is shorthand
for max [0,z]. The parameter s7. is related to the rate of change of inter-day
travel demand.

J

3.1 Within-Day Fixed Point Formulation

We have already commented that an algorithm for the within-day differential
variational inequality is needed if the dual time scale model is to be solved.



Solution of the within-day differential variational inequality, as we have also
mentioned, is complicated by the fact that the effective delay operator

U (t,h) = (Wy(t,h) :p € W)

is typically neither monotonic nor differentiable. Consequently, we must select
an algorithm that places minimal restrictions on ¥ (¢,h). One such category
of algorithms is that of iterative methods in Hilbert space for a fixed point
equivalent of the within-day differential variational inequality

find A™* € A, (Q7) such that
A
D opep U, (t, A7) (h; - h;*) dt >0 » DVI(U, A A) (29)
(r—1)-A

VhT € A (QT)

for every 7 € T. We will use the notation DUE(¥, A, A) for the within-day
dynamic user equilibrium equivalent to DVI(¥,A;, A) defined in (29) above.
With the preceding background, we are in a position to state and prove a result
that permits the solution of the differential variational inequality (29) to be
obtained by solving an appropriate fixed point problem. That result is:

Theorem 2 Fized point re-statement. Assume, for each T € Y, that ¥,(-,h7) :
[(T—1) A, 7-A] — R is measurable for allp € P, h™ € A, (Q7). Then, for
each 7 € Y, the fized point problem

h™ = Py (gn) [W" — ¥ (t,h7)], (30)

is equivalent to DV I(W, A, A) where Py_(q- -] is the minimum norm projec-
tion onto A-(Q7) and v € R .

Proof: Friesz et al. (2008) give a formal proof of this result.

3.2 The Within-Day Algorithm
Naturally Theorem 2 suggests the following algorithm:

Fized Point Algorithm for DUE(¥, A, A)

’Step 0. Initialization.‘ Select h™° and the rule for generating the sequence

{B1}. Also select a stopping tolerance e € R . Set k = 0.

’ Step 1. Major iteration. ‘ Compute

hT,k‘+1 — PA.,(QT) [hr,k —a¥l (t, hT,k)]



Step 2. Stopping test. ‘ If

HhT,k—&-l _ hT,kH <e

stop and declare
T hT,k‘—i-l

Otherwise set k =k + 1 and go to Step 1.

3.3 The Dual Time Scale Algorithm

It is appropriate for us to now provide a summary of the time stepping method
intrinsic to the dual time scale model and its relationship to the within-day fixed
point algorithm. The main objective of the time stepping method is to separate
the day-to-day dynamics from a sequence of within-day DUE problems, so that
exactly one DUE problem is faced for each day. Recall the day-to-day demand
growth model of our interest is

Q' = Fy (Q K3, . hT50)
V(i) eW, T€{1,2,..,N—1} (31
o> 0 V(i,j)ew, re{2,.. N} (32)
o= Ky V(@) ew (33)

The algorithm itself has the form given below:

Complete Algorithm for the Dual Time Scale Model

’Step 0. Initialization. ‘ Given Qllj* = K;; for all (¢,7) € W, choose the vector
of model parameters 6. Set 7 = 1.

’ Step 1. Solving the Within-Day Model. ‘ Solve DUE(V, A, (Q7*),A) for day
7 by the fixed point algorithm in Section 3.2. Call the solution A7"*.

’ Step 2. Update Demand. ‘ With the equilibrium information in hand, compute

the travel demand for the next day according to

QLT = Fiy (QT RV R hT0) V(i) €W

1] 15

Step 3. Time Stepping. ‘ If 7 = N, stop. Otherwise set 7 = 7+ 1 and go to
Step 1.




4 Dynamic Network Loading

The problem of finding link activity when travel demand and departure rates
(path flows) are known is commonly referred to as the dynamic network loading
problem. Effective path delays are constructed from arc delays that, directly or
indirectly, depend on arc activity; moreover, activity on a given arc is influenced
by the delays on paths that utilize that arc. Thus, dynamic network loading is
intertwined with the determination of path delays. Recall that, in our formula-
tion and computational scheme for the dual time scale model presented above,
all we require of the effective path delay operators is that they are measurable
and nonnegative. As such our formulation of dual time scale dynamic user
equilibrium can accommodate effective path delays derived from virtually any
dynamic network loading procedure and any model of queueing that imputes
arc delays.

For our calculations, we have employed two network loading models based
on the following:

1. the point queue model presented by Friesz et al. (1993) and Friesz and
Mookherjee (2006); and

2. the cell transmission model as implemented by Lo and Szeto (2002).

We employ these models to compute path delays for any given vector of de-
parture rates h according to procedures described in Lo and Szeto (2002) and
Friesz et al. (2008).

5 Numerical Examples

In this section, we present the results of fixed point algorithm when applied to
the well known 76 arc Sioux Falls network (see Figure 1) for the two network
loading algorithms mentioned in the preceding section. Our example has seven
origin-destination pairs. The key exogenous data are given in Table 1 and Table
2. In detail, Table 1 provides the arc costs and capacities for the Sioux Falls
network. In Table 2, the number of paths and desired arrival time is provided
for each OD pair. The desired arrival time is based on the continuous time
commuting period from 8:00 to 9:20. The computed exit flow rates for each arc
of two representative paths are presented in Figure 2 and Figure 3. From the
same figure (and other plots not included here for the sake of brevity) we see
that our numerical solutions are bona fide dynamic user equilibria. In Figure
4 we show how demand evolves on a day-to-day basis.

5.1 Performance of the Fixed Point Algorithm

The numerical example was solved by the continuous time DUE fixed point algo-
rithms employing two network loading models. The two network loading models
used were the point queue model and the cell transmission model. The solution
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Figure 1: Sioux Falls Network
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Arc ‘ Cost ‘ Capacity ‘ Arc ‘ Cost ‘ Capacity ‘ Arc Cost Capacity
1 6 90 27 3 90 52 2 90
2 2 90 28 4 90 53 6 90
3 6 90 29 2 90 54 4 90
4 2 90 30 6 90 55 2 90
5 2 90 31 3 90 56 16 90
6 2 90 32 3 90 57 2 90
7 4 90 33 4 90 58 6 90
8 2 90 34 3 90 59 4 90
9 2 90 35 4 90 60 16 90
10 3 90 36 4 90 61 4 90
11 2 90 37 14 90 62 4 90
12 10 90 38 14 90 63 6 90
13 2 90 39 4 90 64 4 90
14 2 90 40 3 90 65 8 90
15 10 90 41 4 90 66 4 90
16 2 90 42 2 90 67 2 90
17 2 90 43 4 90 68 6 90
18 4 90 44 4 90 69 8 90
19 2 90 45 2 90 70 2 90
20 2 90 46 2 90 71 2 90
21 4 90 47 2 90 72 2 90
22 2 90 48 2 90 73 2 90
23 2 90 49 2 90 74 4 90
24 4 90 50 2 90 75 4 90
25 2 90 51 6 90 76 2 90
26 2 90

Table 1: Exogenous Arc Data for Sioux Falls Network

OD pairs ‘ Number of Paths ‘ Desired Arrival Time

(1,20)
(13,20)
(3,15)
(12,18)
(2,13)
(9,19)
(4,7)

55
4
6
1

S

—_

5
6

8:45
8:50
9:00
9:05
9:10
9:15
9:20

Table 2: Exogenous Data for Sioux Falls Network
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Figure 2: Traffic Flow and Travel Cost for Path 21 for the Point Queue Model
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Figure 3: Traffic Flow and Travel Cost for Path 1 for the Cell Transmission

Model
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Figure 4: Travel Demand Changes for 7 OD Pairs

has been coded in MATLAB 7 and GAMS, and solved on a standard desk-
top computer with the following attributes: Windows Vista with Intel Core2
Duo 2.20GHz and 1.5GB RAM. The day-to-day time stepping used to update
demand is extremely fast and therefore does not significantly affect computa-
tion time. In addition, each within-day dynamic user equilibrium calculations
and successive within-day calculation in day-to-day evolution dynamics becomes
faster since a warm-start protocol is employed whereby a trial solution based
on the previous within-day flow pattern is used. To measure the performance
of the fixed point algorithm for the point queue model and the cell transmission
model, we collected the number of iterations for each day. Table 3 provides the
number of such iterations for the fixed point algorithm for each model.

As shown in Figure 5, the algorithm significantly decreases the error in the
first several iterations.

6 Concluding Remarks

We have presented a dual time scale model of dynamic network traffic flows that
integrates a day-to-day demand growth model with a differential variational
inequality formulation of within-day dynamic user equilibrium; this model is
compatible with a variety of network loading models. The differential variational
inequality formulation we have given for within-day dynamic user equilibrium
offers advantages: (1) the differential variational inequality may be very easily

14



Point Queue Model Cell Transmission Model
Day 1 15 times 18 times
Day 2 15 times 16 times
Day 3 15 times 17 times
Day 4 15 times 17 times
Day 5 14 times 17 times
Day 6 13 times 16 times
Day 7 13 times 16 times
Total Iteration 87 times 117 times

Table 3: Algorithm performance on example problems

6
fteration

Figure 5: Convergence plot for the Fixed Point algorithm
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analyzed the minimum principle from optimal control theory; (2) our fixed point
algorithm is able to consider non-differentiable and non-analytic path delay
operators; and (3) the rapidly growing literature on differential variational
inequalities (see Pang and Stewart, 2008, for a review) will likely yield additional
computational tools in the years ahead that may be exploited to find DUE flows.
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