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Abstract

This paper considers a dual time scale transportation planning model
for which demand evolves on a day-to-day time scale and traffi c flows on
arcs of the transportation network fluctuate on a within-day time scale.
We show the problem is particularly amenable to a demand learning ap-
proach when using a demand model motivated by evolutionary game the-
ory. We then argue that an alternative model of demand growth based
on the paradigm of preferential attachment familiar from network science
may be fit into the same mathematical structure and computed with equal
effi ciency. Numerical experiments for comparing the impact of these two
models of day-to-day demand dynamics are proposed.

1 Introduction

It is widely acknowledged that, to create models for transportation planning that
recognize the essential dynamic character of passenger network flows, one must
consider two time scales: the so-called within-day time scale and the day-to-day
time scale. Substantial progress has been made in modeling within-day dynamic
flows for fixed trip matrices; one of the most widely acknowledged models for
this purpose is the dynamic user equilibrium model proposed by Friesz et al.
(1993) and studied by Xu et al. (1999), Wu et al. (1998), Friesz et al. (2001),
Bliemer and Bovy (2003), and Friesz and Mookherjee (2006). In this paper we
propose two day-to-day models of demand growth compatible with a differential
variational inequality formulation of the Friesz et al. (1993) model. The first of
these employs dynamics inspired by evolutionary game theory, while the second
uses the perspective of preferential attachment familiar from the network science
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and social network literature to create a model of demand growth. Additionally,
numerical experiments to compare and contrast the two proposed theories of
demand growth are described, along with hypotheses that one might address
via such experiments.

2 Dynamic User Equilibrium

First, however, we need to make a few comments about modeling and computing
dynamic flow patterns on traffi c networks. Dynamic traffi c assignment is the
name given to the determination of time varying traffi c flows for road networks.
When those flows obey a differential Nash-like equilibrium relative to departure
rates and route choice, we say we have a dynamic user equilibrium flow pattern.
To define a dynamic user equilibrium, we introduce the notion of an effective
path delay operator Ψp(t, h), which expresses the unit path delay for departure
time t and traffi c conditions h. The vector h is time dependent and its pth

component is hp(t), the departure rate from the origin of path p at time t. A
dynamic user equilibrium flow pattern has the property that

h∗p > 0, p ∈ Pij =⇒ Ψp(t, h
∗) = vij (1)

where Pij is the set of paths that connect origin-destination pair (i, j) ∈ W ,
while W is the set of all origin-destination pairs. Furthermore, vij is the min-
imum travel delay that can be experienced for (i, j) ∈ W . Embedded within
each effective path delay operator Ψp(t, h) is a notion of arc delay (conges-
tion) for the arcs comprising a given path and a penalty for early/late arrival.
In fact the path delay operators are really a shorthand for a separate model,
frequently called a network loading model, which determines the propagation
of flows through a given network, as well as the path delays experienced, in
response to a given vector of departure rates.
Additionally all path-specific departure rates are non-negative so we write

h = (hp : p ∈ P ) ≥ 0 (2)

where P is the set of all network paths. As a consequence

Ψp(t, h
∗) > vij , p ∈ Pij =⇒ h∗p = 0

as can easily be proven from (1) by contradiction. We next comment that the
relevant notion of flow conservation is∑

p∈Pij

∫ T

0

hp (t) dt = Qij ∀ (i, j) ∈W

where Qij is the fixed travel demand (expressed as a traffi c volume) for (i, j) ∈
W . Thus, the set of feasible solutions is

Λ =

h > 0 :
∑
p∈Pij

∫ T

0

hp (t) dt = Qij ∀ (i, j) ∈W

 (3)
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Friesz et al. (1993) show that a dynamic user equilibrium is equivalent to the
following variational inequality:

find h∗ ∈ Λ such that∑
p∈P

∫ T

0

Ψp(t, h
∗)
(
hp − h∗p

)
dt ≥ 0 ∀h ∈ Λ

 (4)

Suffi ce it to say that algorithms exist for solving (4); these include the fixed
point algorithm presented and tested in this paper.

3 Demand Dynamics

Consider a transportation network for which a set W of origin-destination pairs
(i, j) have been defined. Let τ ∈ Υ ≡ {1, 2, ..., L} be one typical discrete day
relative, and take the length of each day to be ∆, while the continuous clock
time t within each day is t ∈ [(τ − 1) ∆, τ∆] for all τ ∈ {1, 2, ..., L}. The entire
planning horizon spans L consecutive days. As noted above, we assume the
travel demand for each day changes based on the moving average of congestion
experienced over previous days.

3.1 The Dual Time Scale Model

Let us suppose we have a demand growth model of the abstract form

Qτ+1
ij = Fij

(
Qτij , h

τ , θ
)
∀ (i, j) ∈W, τ ∈ {0, 1, 2, ...L− 1}

Qτij ≥ 0 ∀ (i, j) ∈W, τ ∈ {0, 1, 2, ...L}
Q0
ij = K0

ij ∀ (i, j) ∈W

where

Qτij = origin-destination travel demand ∀ (i, j) ∈W, τ ∈ {0, 1, 2, ...L}
Qτ =

(
Qτij : (i, j) ∈W

)
Q = (Qτ : τ ∈ Υ)

K0
ij = a known, non-negative constant ∀ (i, j) ∈W
hτ =

(
hτp : p ∈ P

)
h = (hτ : τ ∈ Υ)

θ = a vector of model parameters

Also we define

Λτ (Qτ ) =

hτ > 0 :
∑
p∈Pij

∫ T

0

hτp (t) dt = Qτij ∀ (i, j) ∈W


Λ (Q) =

L∏
τ=1

Λτ (Qτ )
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Then a dual time scale model of dynamic user equilibrium with endogenous
demand growth is

find Q ≥ 0 and h∗ ∈ Λ (Q) such that∑
p∈P

∫ T

0

Ψp(t, h
τ∗)
(
hτp − hτ∗p

)
dt ≥ 0 ∀τ ∈ Υ, hτ ∈ Λτ (Qτ )

Qτ+1
ij = Fij

(
Qτij , h, θ

)
∀ (i, j) ∈W

Q0
ij = K0

ij ∀ (i, j) ∈W

 (5)

This model may be solved by time stepping, so that exactly one variational
inequality is faced for each value of τ .

3.2 An Ad Hoc Model of Demand Growth

We postulate that the travel demands Qτij for day τ between a given OD pair
(i, j) ∈W are determined by the following system of difference equations:

Qτ+1
ij =

Qτij − sτij


∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, x (h∗, g∗)] dt

|Pij | · τ ·∆
− χij





+

∀τ ∈ {0, 1, 2, ...L− 1} (6)

with boundary condition
Q0
ij = Q̃ij (7)

where Q̃ij ∈ <1
+ is the fixed travel demand for the OD pair (i, j) ∈ W for the

first day and χij is the so-called fitness level. The operator [x]
+ is shorthand

from max [0, x]. The parameter sτij is related to the rate of change of inter-
day travel demand. The above system of difference equations assumes that the
moving average of effective travel delay plus any imposed toll is the principal
signal that influences demand learning.

3.3 Replicator Dynamics for Demand Growth

The model (6) does not precisely capture the structure proposed by Hofbauer
and Sigmund (1998) for the fundamental dynamics of evolutionary game theory,
namely replicator dynamics. For a state variable Q, replicator dynamics have
the structural form

Q̇

Q
= α {fitness− average fitness} (8)

where α is a constant of proportionality and the notion of fitness of a given
system is given a broad interpretation. We may modify the story behind (6) to
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more closely correspond with (8) by writing

Qτ+1
ij −Qτij
Qτij

= ατij


χij −

∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, h∗ (t)] dt

|Pij | · τ ·∆


∀τ ∈ {0, 1, 2, ...L− 1} (9)

with the same boundary condition (7). We now introduce a specific definition
of instantaneous fitness. In particular, we assume instantaneous fitness for a
given origin-destination pair (i, j) ∈W is

χij ≡ vij = min
p∈Pij

Ψp [τ , h∗ (τ)] (10)

In words, instantaneous fitness is least travel delay achieved at the end of the
previous discrete time period (yesterday) and hence known at the start of the
current discrete time period (today). Obviously (9) may be manipulated to give

Qτ+1
ij = Qτij − ατij



∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, h∗ (t)] dt

|Pij | · τ ·∆
− vij


Qτij

∀τ ∈ {0, 1, 2, ...L− 1} (11)

If information technology is increasing the speed of access to data about least
travel delay, then the length of each “day”can be shortened, as the notion of
day used herein is arbitrary. If one wishes to assure demand does not become
negative, then (11) is replaced by

Qτ+1
ij =

Qτij − ατij


∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, h∗ (t)] dt

|Pij | · τ ·∆
− vij


Qτij



+

∀τ ∈ {0, 1, 2, ...L− 1} (12)

4 Demand Dynamics Based on Preferential At-
tachment

In network science affi nity networks are widely thought to evolve according to
the notion of preferential attachment. Bianconi and Barabasi (2001) suggest
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an improved form of preferential attachment they call quenched noise. In that
model they denote the connectivity of node i by ki(t) and postulate an associated
fitness parameter ηi that accounts for differences among nodes with regard to
their potential to attract and sustain attachments. They view network growth
as a process whereby a new node with its distinct fitness is added randomly to
a network during each period of time considered. The probability that a new
node will connect to node i already present in the network is taken to be

πi =
ηiki∑
j ηjkj

(13)

Accordingly node i will increase its connectivity at the rate

∂ki
∂t

= m
ηiki∑
j ηjkj

(14)

where m is the number of new arcs added upon introduction of a new node.
An initial condition must be associated with each equation (14) in order for the
system of partial differential equations created in this fashion to be numerically
solved.
Our interest in the above version of the preferential attachment model lies

in the fact that it suggests a relationship between an underlying social network
and the formation of travel demand. In particular one may partition, without
loss of generality, the nodes of an affi nity network into spatially related subsets
of nodes that correspond to origins or destinations; when a given social network
node is both an origin and a destination, a copy of it can be made and included
as a member of both categories. Thus, arcs added to the social network, in
light of the partition just described, join origin-destination pairs. As each arc
of the affi nity network represents a “travel relationship”, it also represents an
increment to the corresponding origin-destination travel demand. In this way,
the Bianconi-Barabàsi network growth model, when applied to a social network,
becomes a model of travel demand growth.
The above observations not withstanding, it is not really possible to directly

employ the mathematical analysis surrounding the quenched noise model within
a dynamic traffi c assignment or congestion pricing model because the Bianconi-
Barabàsi model lacks the spatial and agent detail needed for transportation
network modeling. As a consequence, we need to provide a separate articulation
of travel demand induced by affi nity network growth, based on preferential
attachment, that involves the variables and concepts introduced in previous
sections and includes randomness. To that end we propose the following model:

Qτ+1
ij = Qτij + sτij

ηijQ
τ
ij∑

k∈No ηkjQ
τ
kj

∀τ ∈ {0, 1, 2, ...L− 1} (15)

where all notation is as before but now fitness is doubly subscripted and appears
as ηij for each (i, j) ∈ W and we use Wo to denote nodes that are origins.
Importantly each sτij remains a random variable that is naturally suited for
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treatment by a learning process. Note also that (15) is a discrete time version of
preferential attachment, in that demand growth is greatest for origin-destination
pairs with the largest current demand. Variations of (15) are easily constructed.
For instance

Qτ+1
ij = Qτij + sτij

∑
k∈No ηkjQ

τ
kj∑

(k,`)∈W ηk`Q
τ
k`

∀τ ∈ {0, 1, 2, ...L− 1} (16)

considers all origin-destination pairs in assessing the probability of a new incre-
ment in demand for a given pair.
Note that both model (15) and model (16) have the property that demand

grows monotonically, which cannot be deemed realistic for all time. Thus, a
needed modification is the introduction of a term that corresponds to the re-
tirement of individuals from the underlying social network; if the rate of such
retirements is ρτij , then (15) and (16) may be re-stated, respectively, as

Qτ+1
ij =

[
Qτij + sτij

ηijQ
τ
ij∑

k∈No ηkjQ
τ
kj

− ρτijQτij

]+

∀τ ∈ {0, 1, 2, ...L− 1} (17)

Qτ+1
ij =

[
Qτij + sτij

∑
k∈No ηkjQ

τ
kj∑

(k,`)∈W ηk`Q
τ
k`

− ρτijQτij

]+

∀τ ∈ {0, 1, 2, ...L− 1} (18)

where we have introduced the [·]+ operator to assure demand does not become
negative. The retirement rates ρτij may be determined empirically, by a separate
model or randomly. The random approach seems more in keeping with notion
of preferential attachment we have borrowed from network science to describe
the addition of new demand.

5 Demand Learning via the Kalman Filter

In this section we will base our remarks on the ad hoc model (6). However,
it should be clear that a completely analogous discussion of demand learning
may be crafted for each of the demand models suggested above. The model
parameters sτij will typically be unknown to the modeler and follow stochastic
distributions. Assuming that the modelling error and observation error follow
normal distributions, in this section, we adapt a well-known forecasting method,
so-called Kalman filtering. Recall the ad hoc day-to-day dynamics for travel
demand:

Qτ+1
ij =

Qτij − sτij


∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, x (h∗, g∗)] dt

|Pij | · τ ·∆
− χij





+

∀τ ∈ {0, 1, 2, ...L− 1} (19)
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Each parameter sτij is treated as fixed during the solution process, but it is
stochastic and its real value is unknown. After one day is completed, we want
to update the model parameter sτij to obtain a better estimate of demand for
the next planning horizon. The dynamics of sτij are assumed to be

sτ+1
ij = sτij + ξτij

where ξτij is a random noise from a normal distribution N (0, Bij). The matrix
Bij is known and called the process-noise covariance matrix.

The value of the parameter sτij cannot be observed directly but only through
the change of realized travel demand, which can be defined as

zτij ≡ ∆Qτij = Qτ+1
ij −Qτij

Note that

∆Qτij = −sτij



∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, x (h∗, g∗)] dt

|Pij | · τ ·∆
− χij


+ ωτij (20)

and ωτij is a random noise of observation from a normal distribution N (0, Rij) .
The matrix Rij is known and called the measurement noise covariance matrix.
Referring to Section 12.6 Bryson and Ho (1975), we obtain the Kalman filter
dynamics

s̄τ+1
ij = ŝτij = s̄τij + V τij

[
zτij −Hτ

ij s̄
τ
ij

]
P τij =

[(
Mτ
ij

)−1
+
(
Hτ
ij

)T (
Rτij
)−1

Hτ
ij

]−1

Mτ+1
ij = P τij +Bτij

where

V τij ≡ P τijH
τ
ij

(
Rτij
)−1

Hτ
ij ≡ −



∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, x (h∗, g∗)] dt

|Pij | · τ ·∆
− χij


and s̄τij is the a priori estimate of s

τ
ij (before observation) and ŝτij is the a

posteriori estimate (after observation). When estimation process based on the
above dynamics is completed, we have s̄τ+1

ij , which is the value of sij used in
the next discrete time interval.

8



6 Conclusions

We have proposed some dynamics for the growth of travel demand in vehicular
traffi c networks. Clearly, these ideas are preliminary; they are meant to promote
discussion and to motivate future research. A great deal of work still needs to
be done.

6.1 Numerical Experiments

The models proposed above were constructed to conform with evolutionary game
theory and the dynamics of preferential attachment in social networks. However,
we do not know what spatial and temporal patterns of traffi c flows and network
usage at the link level will result from these models. In particular, we do not
know if individual demand growth models, drawn from the family of models
we have described, will display statistical tendencies to promote or diminish
stability, resiliency, sustainability, congestion, the price of anarchy, the Braess
paradox, and social cohesion.
For example if the rate of retirements in model (17) is described as a feedback

mechanism driven by link-level congestion occurring on the transportation net-
work, can preferential attachment dynamics maintain the level of connectivity of
a community (origin) with other communities (destinations) suffi cient to assure
adequate employment and/or other means of sustainability? If the answer to
this question were "no" based on numerous simulations, then empirical studies
to ascertain whether demand does in fact grow by preferential attachment are
needed. If such growth mechanisms are found to occur in the real world, then
policies that deter demand growth by preferential attachment are warranted.
Many other questions and hypotheses may be proposed and considered using
the dual time scale model (5) together with one of the demand growth models
of Sections 3.2, 3.3 and 4.

6.2 Other Network Growth Processes

The Bianconi-Barabàsi network growth model is only one of many that have
been discussed in the network science literature. Several others are also worth
considering in the current context. Erdos and Renyi (1959) start with a set of
nodes and simply assume that each pair of nodes is connected by an arc with
probability p. In the current setting, this corresponds to a situation in which
the demand between an origin-destination pair increases by a fixed amount with
probability p. One can complicate this model by specifying the number of desti-
nations associated with each origin (i.e., by specifying the degree of each origin).
The properties of the ensemble of graphs that have a given degree distribution
have been studied by Molloy and Reed (1998), Newman et al. (2001), Chung and
Lu (2004) and others. Finally, one might want to construct the network based
on attributes of the network. For example, one might assume that realizations
with lower cost are more likely to occur [as in the cost effi ciency theory of Smith
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(1983)] or one might make assumptions about the topological properties. These
kinds of ensembles have been studied by Strauss (1986).
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