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Abstract

This paper introduces a Value-at-Risk (VaR) model to generate route choices for a hazmat

shipment based on a specified risk confidence level. VaR is a threshold value such that the

probability of the loss exceeding the VaR value is less than a given probability level. The

objective is to determine a route which minimizes the likelihood that the risk will be greater

than a set threshold. Several properties of the VaR model are established. An exact solution

procedure is proposed and tested to solve the single-trip problem. To test the applicability of

the approach, routes obtained from the VaR model are compared with those obtained from

other hazmat objectives, on a numerical example as well as a hazmat routing scenario derived

from the Albany district of New York State. Depending on the choice of the confidence level,

the VaR model gives different paths from which we conclude that the route choice is a function

of the level of risk tolerance of the decision-maker. Further refinements of the VaR model are

also discussed.
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1 Introduction

Risk assessment and hazmat shipment planning are two main fields widely researched in hazmat

transportation. Researchers assess the risk by modeling probability distribution over given areas

regarding the commodities, the transport modality (Abkowitz et al 1984) and the environmental

conditions (Patel and Horowitz 1994). Hazmat shipment planning involves two primary routing

problems: the local route planning – the selection among alternative paths for a single-trip shipment

of a single hazmat type from an origin to a destination, and the global route planning – the planning

of multiple trips among multiple origin-destination pairs (O-D pairs) to mitigate and equalize the

social risk of the whole road network. The former is mostly of interest to carriers, while the latter

is usually the main concern of government and environmentalists. In this paper, we focus on

the modeling of the risk of hazmat transportation and the minimization of the risk brought by a

single-trip hazmat shipment.

Hazmat accidents are featured by their low probability and high consequence (LPHC). It is esti-

mated that average 10−6 accidents occur on a trip along each kilometer (Harwood et al 1993), which

means it is hard for analysts to collect sufficient and precise data, or to assess the long-term environ-

mental impact. The transit phase of hazmat transportation results in 3,885 accidents/incidents with

damages costing $104,674,760 in 2011 (U.S. Department of Transportation Pipeline and Hazardous

Materials Safety Administration 2012). Shifts of the road conditions and population over time fur-

ther increase the uncertainty of the historical data sources of hazmat accidents. Hazmat accidents

can, however, result in disastrous damage to the population and the environment. Decision-makers

desire to consider both objective and subjective factors to make flexible route choices so that vari-

ous uncertainty can be accommodated within the same decision-making framework. This requires

flexible decision-making based on the current risk preference that provides the motivation for the

work presented in this paper. Our model generates a route choice such that the probability of

experiencing a greater risk than a specified cutoff value is less than a certain threshold. In order

to obtain an appropriate formulation for our model, we utilize the Value-at-Risk (VaR) concept.

VaR is a powerful risk measurement tool that is widely applied in finance mathematics and

financial risk management. It emerged in 1993 (McNeil et al 2005), and has been established in the

past 20 years as a standard benchmark to measure the potential loss in financial risk management
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given a certain confidence level (Linsmeier and Pearson 1996).

Many methodologies have been developed regarding VaR applications in finance and economics,

such as historic, parametric or Monte Carlo methods. Though these methodologies are largely dif-

ferent from each other (Beder 1995), they share the same procedure to calculate VaR by estimating

the combination and distribution of portfolio returns and computing the VaR value of the portfolio.

Another common basis is the assumption of the leptokurtic financial return distribution, negatively

skewed equity returns, and quasi-stable market volatilities (Mandelbrot 1963, Fama 1965). Vari-

ants of VaR models are designed to address various market units. The Component Value at Risk is

proposed by Hallerbach and Menkveld (2004) based on the conventional VaR measure to compute

the risk exposure of the breaking down of a firm to different market risks. The Conditional Value

at Risk Larsen et al (2001) measures the possible losses in the tail of the distribution, to reduce

the problem caused by the excessive risk measured in VaR. Cashflow at Risk (CFaR) (Stein et al

2001) extends the measure to cover metrics other than value. In general, these methodologies are

dependent on the distribution assumption of portfolio returns, given a certain confidence level,

rather than a point estimate that may never actually occur.

In the last decade, VaR has ever begun to find acceptance in non-financial applications Offutt

et al (2006) applied VaR and a distortion function to measure the risk of catastrophic events with low

probability from shortfalls of military or security capabilities. In industrial and service areas, VaR

is witnessed with its utilization everywhere. The former includes agricultural industry(Manfredo

and Leuthold 1998) and power industry (Shebl and Berleant 2002). The latter involves IT services

(Kauffman and Sougstad 2010, 2008) and supply chain planning (Sanders and Manfredo 2002, Lu

et al 2010). Additionally many large enterprises apply VaR in enterprise risk management system

to qualify and derive aggregate risks (Nocco and Stulz 2006). .As far as transportation application,

some literatures discuss risk management in transportation investment (dePalma et al 2009, Lu

et al 2010), market risk in freight rates (Angelidis and Skiadopoulos 2008), or shipping credit

risk (Alizadeh and Nomikos 2009). But those models mainly focus on the risk or loss brought by

financial or economic activities. Take Ju et al (2002) as example, he introduced a VaR model for

the revenue management of seat rates in civil aviation transportation, which belongs to the risk

of operations. So far there is neither application of VaR in risk measurement or risk management

pertaining to shipments or commodities yet, nor research has ever been done on measuring and
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controlling of consequence or loss caused by commodities to the neighborhood once accidents occur

during the shipment.

Applying the VaR concept to hazmat routing allows us to measure a cut-off value for the risk

of hazmat shipments. However, it’s helpful to keep in mind the differences between the model we

proposed and those in finance. First of all, the VaR models in finance focus on the profit loss

measurement faced by the investment and, the measurement units of both the investment and the

measurement object are the same; our model focuses on the risk measurement of taking a certain

route. The input is a candidate route, and risk brought by this route is the object to be measured.

Because of this inconsistency of the measurement units, we could not directly apply the classic

risk measurement methods of finance VaR. Secondly, the calculation of a path’s VaR value and

the algorithm to solve the VaR model for hazmat transport risk is quite different from, and more

complicated than those methodologies to solve VaR models in financial and economical problems.

In the next section, we collect nine popular risk models in hazmat transport. Section 3 presents

the mathematical formulation of the VaR model for hazmat transport and develops several prop-

erties of the model. Section 4 develops an exact solution procedure to solve single-trip hazmat

shipment problems. A numerical example is presented in Section 5 to compare the VaR model

with the nine common risk models discussed in our literature review. In Section 6, we present our

computational experience with a scenario around the Albany district of New York state. In the

end, Section 7 concludes the meaning of our model to decision makers and discusses our solution

method and future research suggestions.

2 Review of Models to Evaluate Risk of Hazardous Material Trans-

portation

As stated earlier, the route planning element of hazmat transportation problems can be categorized

into two groups: local and global. From the carrier’s perspective, a single-shipment hazmat routing

problem can be classified as a local route planning problem. But governors care more about the en-

tire road network, which belongs to the global route planning problem, mitigating the accumulative

risk brought by multiple shipments between different O-D pairs. Literature on the subject proposes

the formulation of the risk evaluation function of a hazmat shipment from different perspectives.
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Table 1: Mathematical Notation Table

Notation Explanation

Sets
G(N ,A) a graph of road network
N set of nodes, |N | = n
A set of links, |A| = m
P set of available paths for shipment s
C set of ascending-order sorted link consequences in G, |A| = m̄
Al link set for path l ∈ P, |Al| = ml

Cl set of ascending-order sorted link consequences for path l ∈ P, |Cl| = ml

Parameters
pij accident probability on link (i, j) ∈ A
cij cost on link (i, j) ∈ A
wij usage probability of link (i, j) ∈ A
Cij accident consequence on link (i, j) ∈ A
α confidence level to control the worst risk brought by hazmat transportation
ᾱ 1− α
pij modified accident probability on link (i, j) according to its consequence level

compared with βα
ml number of sorted link consequences of link l ∈ P
mP number of sorted link consequences for all paths in path set P

Variables
Rl measure of risk in path l ∈ P
xij binary decision variable indicating whether link (i, j) selected for shipment s or not

V aRlα VaR value for a path l ∈ P given confidence level α
V aR∗α optimal VaR value given confidence level α
βα maximum cutoff risks under confidence level α
βlα maximum cutoff risks for a path l ∈ P under confidence level α

A transportation network can be defined as G = (N ,A), consisting of a node set N to represent

the road interactions, and a link set A to represent the road segments. For each link (i, j) ∈ A,

there are two attributes, accident probability pij and accident consequence Cij . Table 1 summarizes

the mathematical notation used in this paper.

Suppose a path l consists of an ordered set of links Al = {(ik, jk)|i, j ∈ N , k = 1, 2, · · · ,ml}

where (ik, jk) represents the k-th link in path l; the risk that this path generates can be measured

using different kinds of indicators. It can be measured by single or multiple attributes, and for-

mulated with additive or productive objective functions according to the definition of the problem
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and the assumption of the model.

Alp (1995) proposed a Traditional Risk (TR) model to minimize the expected value of the

consequence of a hazmat vehicle traveling along path l :

Rl =
∑

(ik,jk)∈Al

∏
(ih,jh)∈Al

h<k

(1− pihjh)pikjkCikjk (1)

which assumes that the shipment terminates once an accident happens on a link (i, j). Using

this objective, Alp (1995) formulated the choice of the best route as a non-linear binary integer

program. Furthermore, (1) can be approximated as an additive function and, further, a tractable

shortest path problem formulation (Erkut and Verter 1998). According to North American data

on hazmat transportation accident statistics, accident probabilities are generally extremely small,

usually in the range of 10−8 and 10−6 per mile traveled (Abkowitz and Cheng 1988), which means

that
∏

(ih,jh)∈Al
h<k

(1 − pihjh) ≈ 1. Consequently, (1) can be approximated as follows (Jin and Batta

1997):

Rl =
∑

(i,j)∈Al
pijCij (2)

The approximation (2) is easier to optimize than the function (1), with the resultant problem a

shortest path problem with the cost of traversing a link (i, j) being set to the value pijCij .

Several other models have been developed by focusing on two link attributes. The Incident

Probability (IP) model (Saccomanno and Chan 1985) and the Population Exposure (PE) model

(ReVelle et al 1991) can be viewed as two extreme cases of the Traditional Risk model. The former

focuses on reducing the accident probability, and the latter focuses on the total consequence on

the impacted region, measuring the consequence by how many people are exposed to risks during a

transport activity. A similar model is the Perceived Risk (PR) model (Abkowitz et al 1992), which

uses alternative criteria and criteria weighting for route selection to balance safety and operating

efficiency. A noticeable drawback of the TR model is its risk-neutral attitude, which might not

appropriately reflect the public attitude towards hazmat transportation. The Perceived Risk model

has taken this concern into consideration and adds a weight parameter on consequences to reflect

the public preference on the risk. Both Traditional Risk model and Perceived Risk model can

be viewed as single-attribute models though both of them contain two attributes probability and
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consequence. The two attributes have been preprocessed into a replaced risk attribute defined on

each edge.

These four models are all single-attribute models with an additive objective function. In contrast

with these four models, the Conditional Risk (CR) model is a multiplicative multi-attribute model

with two attributes: expected risk and accident probability (Sivakumar et al 1993a,b, 1995). This

model evaluates the expected consequence conditional on the occurrence of the first accident and it

is suggested for the case of a necessary suspension of a path between an O-D pair after a catastrophic

accident.

Erkut and Ingolfsson (2000) discuss three more catastrophe-avoidance modeling methods for

hazmat transportation. The first model is the Maximum Risk (MM) model, which tries to avoid

catastrophes by using a minimax objective instead of the minisum objective in the Traditional Risk

model (i.e., its focus is to minimize the population exposure that is at risk on any link along the

path rather than that on the entire trip). A similar maximin way to define risk is called a maximum

capacity path problem, which is introduced in Pollack (1960). The Maximum Risk model measures

the extensity of the tail of the consequence distribution. The second model, the Mean-Variance

(MV) model, is widely used by financial analysts and researchers as the quantitative tradeoffs

between return of an investment portfolio and the corresponding risk brought by it. Borrowing the

term variance, this model assumes that the link attributes are stochastic and tries to find paths with

minimal means and variances. The third model applies utility theory on hazmat transportation

to model the risk problem and develops a Disutility (DU) model in the form of U(C) = exp(λC)

where λ > 0. This function assumes that the (i+ 1)-st life lost is more costly than the i-th life lost,

for all i.

These models assume that the risk parameters, both the link accident probabilities and conse-

quences, are already known. The Mean-Variance model includes the variances of those parameters

in the model to simulate the stochastic risk attribute but assumes that the variances are already

known. However, there may be some situations where no accident data is available at all, such as

on a newly developed road. To address such situations, Bell (2007) proposes a mixed-route model

(MM2) under completely uncertain accident probability. It aims to reduce the maximum risk by

sharing shipments between routes. As an output, it generates the potential link usage probabilities

and link accident probabilities utilizing game theory, assuming usage probabilities and accident
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Table 2: Classic Path Risk Evaluation Models

Model Risk Indicator Formula Prob-
ability

Attri-
bute

Route
Strat-
egy

Risk
Prefer-
ence

Obj-
ective

Objective
Function

TR1,2 Expected Risk min
l∈P

∑
(i,j)∈Al

pijCij K S S RN MS A

PE3 Incident Conse-
quence

min
l∈P

∑
(i,j)∈Al

Cij U S S RN MS A

IP 4 Incident Probabil-
ity

min
l∈P

∑
(i,j)∈Al

pij K S S RN MS A

PR5 Perceived Risk min
l∈P

∑
(i,j)∈Al

pij(Cij)
q K S S RA MS A

MV 6 Mean-Variance min
l∈P

∑
(i,j)∈Al

(pijCij + kpij(Cij)
2) K S S RA MS A

DU6 Disutility min
l∈P

∑
(i,j)∈Al

pij(exp(kCij − 1)) K S S RA MS A

MM6 Maximum Risk min
l∈P

max
(i,j)∈Al

Cij U S S RA MM A

MM27 MM (Uncertain
Probabilities)

min
w

max
p

∑
(i,j)∈Al

wij(pijCij + cij) K Mu Mi RA MM A

CR8 Conditional Proba-
bility

min
l∈P

∑
(i,j)∈Al

pijCij

∑
(i,j)∈Al

pij
K Mu S RA MS NA

1. Alp (1995) 2. Jin and Batta (1997)
3. ReVelle et al (1991) 4. Saccomanno and Chan (1985)
5. Abkowitz et al (1992) 6. Erkut and Ingolfsson (2000)
7. Bell (2007) 8. Sivakumar et al (1993b)

K → Known U → Unknown
S → Single-Attribute or Single-Route Mu → Multiple-Attribute
Mi → Mixed-Route RN → Risk-Neutral
RA → Risk-Averse MS → Minisum
MM → Minimax A → Additive
NA → Non-additive

probabilities are two non-cooperative and zero-sum players in the mixed strategy Nash equilibrium

game.

Table 2 summarizes the risk evaluation models in our literature review. The first six models—

TR, PE, IP, PR, MV and DU—can all be reduced to a shortest path problem with additive link

attributes. The seventh model, MM, can be handled with different variant algorithms based upon

the shortest path algorithms (Erkut and Ingolfsson 2000), while the MM2 model from Bell (2007)

is basically a mixed route MM problem and can be converted to an additive linear program. The

last risk model in our literature review, CR, is the most complex model to optimize due to its

non-additive objective function.

Having discussed their properties, let us discuss the validity of these models on the application
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of the hazmat transport problem. The TR model has been criticized as inappropriate for hazmat

transportation due to its risk-neutral attitude. In hazmat transportation, as we will see in equa-

tion (6), the distribution of accident consequence has a large probability for zero and very small

probabilities for large consequences. Therefore the risk-neutral model puts too much weights in

‘zero’ consequence. Both the PE and IP models take only one parameter into consideration and

might generate a biased output. The PR model has considered the issue of risk aversion and added

a weight parameter q on the link consequence Cij , aiming to direct the shipment to those road

segments of less populated areas so as to reduce the consequences caused by an accident. However,

it cannot truly reflect the risk preference by simply adjusting the risk weight q on consequences.

Besides, there is no specific mechanism as far how to select this weight parameter, and there is no

obvious pattern to reflect the relationship between q and optimal solution. The same issue occurs

in the DU model, which also measures the catastrophe aversion with a constant k > 0. By con-

trast, the MV model tries to simulate the stochastic risk attribute by involving both the mean and

variance of the risk parameters into the model. But it assumes that those means and variances are

already known, which depend on large quantities of reliable and consistent data. However, since

hazmat risk is a low-probability event, the data collection is usually a long-period effort, and the

collected data are usually inconsistent because the road situation and population structure are in-

evitably subject to change. It is appropriate to apply the MM method when accident probabilities

are unknown. But this method is too pessimistic, only taking an avoidance measure when acci-

dents are very likely to occur. Bell assumes that the accident probability is completely uncertain

and focuses on estimating the link accident probabilities with mixed routing strategies. It is quite

a novel idea and is highly applicable in the situation when there is no reference to the accident

probability, such as a newly constructed road segment. From another perspective, the CR model

points out the necessity of reevaluating the routing policy after a catastrophic accident. Because

this model is multi-attribute and has a multiplicative objective function, the problem takes much

more effort to solve in comparison with the other models.

As Table 2 illustrates, different researchers quantify hazmat transport risk from different per-

spectives. These models focus on different scenarios of the hazmat transport problem. But they

share a common objective – to find an optimal route for the hazmat shipment to maximally reduce

its impact on society. Generally speaking, those models can be characterized using the following
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six dimensions of problem definition and formulation:

1. Probability-known or probability-unknown problem. Most classic models assume that the

accident probability has been determined according to the historical statistics. However,

recently, more and more researchers have recognized the deficiency of this assumption because

of the difficulty to obtain accurate hazmat accident data. Some researchers like Bell (2007)

began to work on the situation when accident probabilities are completely unknown.

2. Single-attribute or multiple-attribute model. Researchers usually express the real-life problem

in mathematical models with a limited number of factors and study the effect of single factor to

the model objective. Models with more factors are usually more realistic but more complicated

and difficult to solve. TR, IP and PE models tend to research hazmat problems of single risk

attributes, i.e., accident probability or consequence or expected value of consequence. CR

and MM2 consider multiple attributes that affect the decision of route choice.

3. Single-route or mixed-route strategy. Most classic models in our current literature aims to

generate a single optimal route. PR and DU attempt to adjust the “perceived” consequences

via a weight parameter q or k. By applying a different strategy, MM2 generates solutions of

mixed route.

4. Risk-neutral or risk-averse attitude. Different models reflect the different risk preferences of

decision makers toward the risk evaluation. For example, TR is a risk-neutral decision model.

But because hazmat accidents cause severe consequences, decision makers usually tend to be

risk-averse. Such kinds of models include MV, MM, DU and CR.

5. Minisum or minimax objective. According to the model objectives, the hazmat problems

can be expressed with different forms of mathematical formulations. Generally speaking,

the classic hazmat models in our literature can be summarized into two kinds, minisum or

minimax problem.

6. Additive or non-additive objective function. TR, IP and PE models consider only single

risk factors and have additive objective functions. PR, MV, MM and DU models have more

complicated expressions of hazmat risk, but they can be preprocessed into determined sin-

gle parameters. All those models can be converted into shortest path problem and solved
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with corresponding algorithms. But because CR has multiple attributes considered and own

multiplicative objective function, it is more complicated to solve than other models.

Each of those models evaluates risk values from different aspects. But most of them rely greatly

on the historical data sources of one or two risk parameters – probability and consequence – and

often lead to the recommendation of a single route. However, in this paper, we prove that none

of the models in Table 2 is absolutely valid under all confidence levels. When confidence level α

is sufficiently small, each of above models is valid within a certain confidence level. Especially

when α is sufficiently large (close to 1), MM model is valid more than any others. According

to our analysis in later chapters, the valid confidence level of each model is associated with its

probability of bringing the shipment safely to the target node. However, there are always certain

confidence intervals that none of these models can guarantee an absolutely safe path for shipment.

In that case, none of the models can provide a valid solution. Subsequently, a single-route solution

generated by historical data is usually biased and easily criticized due to its lack of scalability

and representation for real-time decision making. The purpose of the VaR model is to provide a

more flexible and reliable alternative modeling approach for routing a hazmat shipment. Decision

makers of different attitudes to risk can choose different routing decisions corresponding to their risk

preferences. Again, rather than a single-route output, this is a two-dimensional decision framework

with different solutions generated given different confidence levels. But the introduction of the

other decision factor α causes the model to be more complicated and difficult to solve. Because the

link parameters along a path are not independent from each other, we cannot measure the VaR

value of a path by simply summing all the link parameters.

3 Value-at-Risk (VaR) Modeling of Hazmat Transportation

This section aims to formulate a VaR risk model for hazmat transportation. We explain in detail

the formulation of the VaR model and analyze its properties.

3.1 VaR Definition of Hazmat Route

In finance and economics, VaR is defined as a threshold value to measure the maximum mark-

to-market loss on an investment from normal market risk within a given time horizon and with a
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pre-set probability level (Jorion 2007).

We consider a single-trip risk optimization problem. Suppose that we are given a hazmat

shipment with an origin (O) and a destination (D) in a transportation network G = (N ,A).

This paper proposes a Value-at-Risk (VaR) framework based on a set of alternative paths for this

shipment, denoted by P. Each path l ∈ P stands for a choice to the carrier for routing a certain

hazmat between an O-D pair. For a given risk probability level α ∈ (0, 1) and a given path l ∈ P,

we define the VaR as the minimal level β such that the probability that the risk Rl exceeds β is

less than or equal to 1− α:

V aRlα = min{β : Pr{Rl > β} ≤ 1− α} (3)

Given a set of candidate paths P, the corresponding hazmat shipment optimization problem is to

solve:

V aR∗α = min{V aRlα : l ∈ P} (4)

The problem (4) will generate an optimal path with the minimum value-at-risk among all available

paths. For instance, we can use α = 0.99 for the 99-percent confidence level. Then, VaR is the

cutoff risk such that the probability that shipment s experiences a greater risk from the candidate

route l is less than 1 percent. Naturally, the lower the VaR value of the candidate l, the more

desirable the path is since it brings less “worst-case” risk compared with other routes with the

same confidence level α. Here, we can see that VaR model is a multiple-attribute model. The route

choice generated by HazMat VaR model depends on both objective and subjective risk factors and

preferences. The route choice varies under different confidence levels α ∈ (0, 1).

3.2 Modeling of Hazmat VaR Problem

There are many ways to measure the extensity of the tail of the consequence distribution. One

available measure is the maximum accident consequence along a path l, i.e., Cmax(P ) ≡ max{Cij :

(i, j) ∈ Al}. In this method, we consider only a kind of hazmat and assume that every accident on

link (i, j) has the same accident consequence Cij . While we discuss the accident consequence on

each link, our model is general enough to consider any type of consequence as long as it is constant
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and known. Since this model only measures the situation when the accidents are most likely to

happen, it is too pessimistic and does not account for the low probability of accidents.

Suppose we assume a confidence level of the accident probability. On the basis of this probability,

we can measure how far the tail of the cutoff risk distribution extends under this confidence level

α, i.e., Cmax(P ) ≡ max{Cij : Cij ≤ V aRα, (i, j) ∈ Al}.

The key to the problem is the derivation of the cutoff risk - VaR, under a given confidence

level α. As we analyzed in Section 2, a transportation route is composed of a set of ordered links;

therefore, the risk parameters, pij and Cij , are not additive. Jin and Batta (1997) have explained

that hazmat shipment can be viewed as a sequence of independent Bernoulli trials. We start by

developing some results related to the properties of the VaR model.

Lemma 1. Suppose each path l consists of an ordered set of links Al in which each link (i, j) ∈ Al

has accident probability pij and consequence Cij. Let C l(k) denote the k-th smallest value among

{Cij : (i, j) ∈ Al}. Let ml denote the cardinality of the collection Cl = {C l(k) : C l(k) < C l(h), k < h}.

Here, ml is not necessarily equal to ml – the size of Al. Then, we have:

V aRlα =



0, 0 < α ≤ 1−
ml∑
i=1

πl(i)

C l(1), 1−
ml∑
i=1

πl(i) < α ≤ 1−
ml∑
i=2

πl(i)

...

C l(k), 1−
ml∑
i=k

πl(i) < α ≤ 1−
ml∑

i=k+1

πl(i)

...

C l
(ml)

, 1− πl
(ml)

< α < 1

(5)

where α is the confidence level, and πl(k) = Pr
(
Rl = C l(k)

)
.

Proof. We first note that the risk will have a value from the set {0, C l1, C l2, · · · , C lml} with the
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corresponding probability. In particular, we have:

Rl =



0, w.p. 1−
ml∑
i=1

pli

C l1, w.p. pl1
...

C l
ml
, w.p. pl

ml

(6)

Given Rl in 6, the cumulative distribution function (CDF) of Rl can be derived as follows:

FRl (r) = Pr
(
Rl ≤ r

)
=



1−
ml∑
i=1

πl(i), r ≤ 0

1−
ml∑
i=2

πl(i), 0 < r ≤ C l(1)

...

1−
ml∑

i=k+1

πl(i), C l(k−1) < r ≤ C l(k)

...

1, C l
(ml)

< r

(7)

where πl(k) = Pr
(
Rl = C l(k)

)
.

Since Pr
(
Rl ≤ V aRl

)
> α, and based on the above CDF of Rl, we get:

V aRlα =



0, 0 < α ≤ 1−
ml∑
i=1

πl(i)

C l(1), 1−
ml∑
i=1

πl(i) < α ≤ 1−
ml∑
i=2

πl(i)

...

C l(k), 1−
ml∑
i=k

πl(i) < α ≤ 1−
ml∑

i=k+1

πl(i)

...

C l
(ml)

, 1− πl
(ml)

< α < 1

which completes the proof.
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Based on Lemma 1, we can provide a reformulation of the VaR problem. Lemma 1 gives us a

set of probability segments: (0, αl1], (αl1, α
l
2], · · · , (αlk, αlk+1], · · · , (αl

ml
, 1), where αlk = 1 −

ml∑
i=k

πl(i).

If we let βlα denote the value of the cutoff risk (VaR) and ᾱ ≡ 1 − α, then we get from (5) that

βlα = C l(k) if and only if:

ml∑
i=k+1

πl(i) ≤ ᾱ <
ml∑
i=k

πl(i) (8)

Then, from the definition of πl, we have:

ml∑
i=k+1

πl(i) =
ml∑

i=k+1

Pr
(
Rl = C l(i)

)
=

∑
(i,j)∈Al
Cij>C

l
(k)

pij (9)

ml∑
i=k

πl(i) =

ml∑
i=k

Pr
(
Rl = C l(i)

)
=

∑
(i,j)∈Al
Cij≥Cl(k)

pij (10)

and consequently, the inequalities in (8) become:

∑
(i,j)∈Al
Cij>C

l
(k)

pij ≤ ᾱ <
∑

(i,j)∈Al
Cij≥Cl(k)

pij (11)

Thus, the following conclusion can be reached.

Corollary 1. Under the same assumptions of Lemma 1, βl is the solution of the VaR model (3),

i.e., βlα = V aRlα if and only if βl satisfies the following two conditions:

∑
(i,j)∈Al
Cij>β

l
α

pij ≤ ᾱ

∑
(i,j)∈Al
Cij≥βlα

pij > ᾱ

Therefore, the original problem (4) is equivalent to solve:

min
l
βlα (12)
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subject to:

∑
(i,j)∈Al,Cij>βlα

pij ≤ ᾱ ∀ i, j ∈ N ∀ l ∈ P (13)

∑
(i,j)∈Al,Cij≥βlα

pij > ᾱ ∀ i, j ∈ N ∀ l ∈ P (14)

where ᾱ = 1 − α. The objective of the model (12) is to find a path l ∈ P to minimize the cutoff

risk βlα over the trip while keeping the cumulative probabilities of the cutoff risks within a certain

threshold ᾱ.

3.3 Reformulation of Hazmat VaR Model

Obviously, the hazmat VaR model (12) is unsolvable for exact solutions since the constraints are

non-linear. However, we know that the VaR value β∗α is located between the smallest and largest

link consequences. Supposing we can find β∗α = C∗(k), then we have the following conclusions:

1. For optimal path l∗, the sum of the probabilities corresponding to links with link consequences

greater than β∗α is less than or equal to 1− α.

2. For any other path lt where βtα > β∗α, the sum of the probabilities corresponding to links with

link consequences greater than β∗α is greater than 1− α.

Let us assume that we have sorted the links of the network G according to the ascending order

of the link consequences: C = {0, C(1), · · · , C(m̄) : C(1) < C(2) < · · · < C(m̄)}. The value of β∗α

should exist among the set C. Then, searching from the lowest consequence upwards, we can find

the optimal VaR path by repetitively evaluating a least probability model at each consequence level.

Furthermore, we convert this problem into a bi-level formulation and solve it with a two-staged

solution procedure.

Before we reformulate this problem, we need to do a series of preprocesses. First, given each

consequence level βα, we modify the link probabilities according to the corresponding link conse-

quences:

pij =

 pij , if Cij > βα

0, if Cij ≤ βα
(15)
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for all (i, j) ∈ A. Here, βα ∈ C. Second, suppose that for consequence level βα, we solve a least

probability model with the objective function value f . Then, let us define an indicator function:

X (ᾱ, f) =


0, f < ᾱ

1, f ≥ ᾱ
(16)

Let xij be a binary decision variable equal to 1 if link (i, j) is used on the shipment s and

0 otherwise. Given a confidence level α, the VaR model is equivalent to solving the following

mathematical program:

min
βα
X (ᾱ, f) · βα (17)

subject to:

βα ∈ C (18)

f = min
x∈Ω

∑
(i,j)∈A

pijxij (19)

where:

Ω =
{
x :
∑
j

xij = 1 for i = O,
∑
j

xji = 1 for i = D,

∑
j

xji −
∑
j

xij = 0 ∀i /∈ {O,D}, xij ∈ {0, 1} ∀i, j ∈ N
}

(20)

The problem (17)-(18) represents the outer problem – a gap closing function. The constraint

(18) restricts that the expected maximum cutoff risk βα comes from the sorted consequence set C.

The cumulative probabilities f must be an optimal function value of the inner problem (19). Here,

we need to note that the inner problem generates a least accident probability path in which only

links with consequences Cij > βα have regular cost while links with consequences Cij ≤ βα have

zero cost. The modification of pij ensures that the links with lower consequences than βα are being

considered in the route choice with higher priority than others with consequences more than βα.

Coming back to the outer problem, we compare the value of f with the set threshold ᾱ and then
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close the gap between f and α gradually until f falls within the set threshold ᾱ. At this point,

we found the desired optimal solution under the given confidence level α. The constraints in the

set (20) are flow-balance constraints on the binary variables xij . Together, they ensure that the

solution describes a path from origin (O) to destination (D).

3.4 VaR Model Properties Analysis

We now establish a series of properties for the VaR model with extreme values of α.

Theorem 1. There exists a scalar αmin such that V aR∗α = 0 for all α ∈ (0, αmin].

Proof. First, we have observed that for each path l ∈ P, there exists a scalar αl such that V aRlα =

0 ∀α ∈ (0, αl]. To show this, let αl = 1 −
ml∑
i=1

πl(i) in Lemma 1. It is obvious that V aRlα =

0 ∀α ∈ (0, αl]. Therefore, for all l ∈ P, there exists a scalar αl such that V aRlα = 0 ∀α ∈ (0, αl].

Let αmin = min
l∈P

αl. Then, we can see V aRlα = 0 ∀α ∈ (0, αmin], ∀l ∈ P. Therefore, V aR∗α =

minl∈P V aR
l
α = 0, ∀α ∈ (0, αmin]. The theorem follows.

Theorem 1 illustrates that when α is very small, the VaR values at all paths are zero. Therefore,

in this case, one may choose the path based on another criterion such as minimum transportation

cost.

Theorem 2. There exists a scalar αMM
max , such that l∗(α−V aR) ≡ l

∗
MM for all α ∈ (αMM

max , 1), where

l∗MM is the optimal path determined by the Maximum Risk model.

Proof. First, we have observed that for each path l ∈ P, there exists a scalar αl such that V aRlα =

max(i,j)∈Al Cij ∀ α ∈ (αl, 1). To show it, let αl = 1 − πl
(ml)

in Lemma 1. It is obvious that

V aRlα = max(i,j)∈Al Cij ∀α ∈ (αl, 1). Consequently, ∀l ∈ P, there exists a αl such that V aRlα =

max(i,j)∈Al Cij ∀α ∈ (αl, 1). Let αMM
max = max

l∈P
αl, and we can see V aRlα = maxαli

C li ∀α ∈

(αMM
max , 1), ∀l ∈ P. Further, we have V aR∗α = minl∈P V aR

l
α = minl∈P max(i,j)∈Al Cij ∀α ∈

(αMM
max , 1). Therefore, l∗(α−V aR) ≡ l

∗
MM . The theorem follows.

Theorem 2 says that for a sufficiently large α level close to 1, especially α ∈ (αMM
max , 1), the

optimal VaR path is the same as the optimal MM risk path. This reflects the extreme risk-averse

attitude of the Maximum Risk model.
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Theorem 3. For any interval (αkP , αkP+1] ⊂ (0, 1), the optimal path determined by the VaR model

(17)-(18) remains the same within the interval.

Proof. Suppose that a shipment has a set of candidate paths P. Each candidate path l ∈ P has a

set of consequences Cl.

Furthermore, suppose that there are mP sorted consequences for all paths in set P. Let CP(k)

denote the k-th smallest value among {Cij : (i, j) ∈ Al, l ∈ P}. That is, we assume:

CP(1) < CP(2) < · · · < CP(k) < · · · < CP
(mP )

, with πP(k) = Pr(R = CP(k)).

Then, the optimal VaR is:

V aR∗α =



0, 0 < α ≤ 1−
mP∑
i=1

πP(i)

CP(1), 1−
mP∑
i=1

πP(i) < α ≤ 1−
mP∑
i=2

πP(i)

· · ·

CP(k), 1−
mP∑
i=k

πP(i) < α ≤ 1−
mP∑

i=k+1

πP(i)

· · ·

CP
(mP )

, 1− πP
(mP )

< α < 1

(21)

The function (21) shows that for each confidence interval:

(αPk , α
P
k+1] =

1−
mP∑
i=k

πP(i), 1−
mP∑

i=k+1

πP(i)


there exists the same optimal V aR∗α; therefore, the optimal route choice is the same in this confi-

dence interval. The theorem follows.

Theorem 3 uncovers an important property of the VaR model. No matter how the confidence

level α varies, we can always find the ranges of confidence intervals so that within each confidence

range there is only one optimal solution. In fact, the function (21) tells us other important infor-

mation about hazmat shipment. From Lemma 1, we know that each candidate path in P may have

19



different risk value when α falls into different confidence intervals labeled:1−
mP∑
i=k

πP(i), 1−
mP∑

i=k+1

πP(i)


Therefore, under different confidence intervals, there may be a different least risk path. Thus,

in a realistic size network (with many available route choices), a shipment is likely to have different

optimal solutions when the α level changes.

The theorems dictate that for most networks, no shipment follows the same optimal path under

all confidence levels α ∈ (0, 1). But because a road network has a finite number of links, the possible

risk values of a path are finite, too. Consequently, the confidence levels can be segmented into a

series of traceable intervals, each with an optimal solution. Once we determine the thresholds of

these solutions, i.e., the upper and lower limits of the corresponding confidence intervals, we can

generate a decision matrix of route choices. Later, in Numerical Example Section 5, we illustrate

that when α varies among (0, 1), the VaR value for each candidate path varies too, subsequently with

the corresponding route choice, as shown in Figure 3. No paths bring any risk to the neighborhood

especially when confidence level α is extremely small and close to 0. In such a case, we can decide

the optimal path according to other criteria like transportation cost. When α becomes larger,

different risk preference generates different route choices. The VaR model equals to MM model

especially when α becomes extremely large and close to 1.

4 Solution Procedure

In this section, we provide an algorithm for solving the reformulation 17 and its computational

complexity.

4.1 Description of the Algorithm

In formulation (17)-(18), the inner problem is a typical shortest path problem with modified link

costs. The outer problem is a loop procedure to select the minimal βα from the ordered consequence

set C that satisfies the condition that the objective function value of the inner problem reaches the

given confidence level α.
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We propose an exact solution procedure for the model (17)-(20) as follows. We first sort the

link consequences in ascending order. We then search βα from the lowest value of C upwards. For

each consequence level βα, we modify the link properties pij according to Cij , and solve the sub

problem with the corresponding objective function value f . Next, we compare the values of f and

ᾱ. If f ≤ ᾱ, we are done; otherwise, we raise βα to the next lowest value of C, and solve the sub

problem again to get a new f . We repeatedly compare the value of f and ᾱ until f ≤ ᾱ, or all

links in the network G have been visited.

Algorithm 1 VaRHazmat

Step 0: (Initialization) Sort all the link consequences in ascending order, C = {0, C(1), · · · , C(m̄)}, and set
n← 0;

Step 1: (Solving the Subproblem) Let βnα = C(n) and update p̄ij . Solve the inner problem (19) to obtain
the solution path ln and the objective value fn, using a shortest path algorithm like Dijkstra’s algorithm.

Step2: (Stopping Test) If fn ≤ ᾱ or n = m̄, we are done; the current path ln is the optimal VaR path
under the confidence level α.

Step3: (Update) If fn > ᾱ and n < m̄, and set n← n+ 1, go to Step1.

Let us explain the validity of Algorithm 1. At iteration n, the modified link probabilities with

βnα are

pij =

 pij , if Cij > βnα

0, if Cij ≤ βnα
(22)

for all (i, j) ∈ A. Then we obtain the following equivalence

fn =
∑

(i,j)∈A

pijxij =
∑

(i,j)∈An
Cij>β

n
α

pij (23)

where An is the set of links in the solution path ln of the subproblem at iteration n. The right-

hand-side of (23) is the sum of link probabilities on this path with consequence greater than βnα.

Further, if the value of βnα is same as the k-th smallest consequence in the path ln, i.e., βnα = C l
n

(k),
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then from (9) we can express (23) as

fn =
∑

(i,j)∈An
Cij>β

n
α

pij =
ml

n∑
i=k+1

πl
n

(i) (24)

To show the validity of the stopping test in Algorithm 1, let V aR∗α denote the solution. If the

current βnα is the solution, i.e., βnα = V aR∗α = C l
n

(k), we have from (8)

ml
n∑

i=k

πl
n

(i) > ᾱ ≥
ml

n∑
i=k+1

πl
n

(i)

and consequently, from (24), fn ≤ ᾱ. On the other hand, if the current βnα is not the solution, i.e.,

βnα < V aR∗α, we obtain fn > ᾱ. To show this, suppose βnα = C l
n

(h) where C(h) < C(k). Then we

have
ml

n∑
i=h+1

πl
n

(i) ≥
k−1∑
i=h+1

πl
n

(i) +

ml
n∑

i=k

πl
n

(i) ≥
ml

n∑
i=k

πl
n

(i) > ᾱ

therefore fn =
∑ml

n

i=h+1 π
ln

(i) > ᾱ. We can apply the same argument to all other paths to show the

validity of the stopping test.

4.2 Complexity of the Algorithm

Now let us analyze the complexity of this algorithm. The prerequisite problem is a sorting prob-

lem. There are many popular sorting algorithms. The typical ones like Mergesort and Heapsort

algorithms (Knuth 1998) provide average O(|A| log |A|) time complexity. Other sorting algorithms

are also developed with better time complexity with additional constraints like algorithms of Han

(2004) and Thorup (2002). The best case for a sort so far is MSD RadixSort (McIlroy et al 1993)

which is specialized for strings, with O(|A|) time linearly proportional to the number of items.

Subsequently, the main body of our algorithm is composed of two steps. The outer loop body

takes O(|A|) runs. As for the inner shortest path problem, it can be solved by search algorithms.

Currently no “best” algorithm exists for every kind of transportation problem, but several algo-

rithms focus on finding the optimal path with either efficiency or accuracy in mind. The enumer-

ation algorithm searches the shortest path by scanning all possible solutions. It ensures to get
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the exact solution within a constant computational time. However the computational effort and

required space increases exponentially with the growth of the size of the input data. The Dijkstra’s

labeling method (Dijkstra 1959) is a classic solution in most shortest path algorithms. It generates

the shortest path from origin (O) to destination (D) by iteratively constructing the shortest out-tree

originating from (O) to a set of permanently labeled nodes. This algorithm terminates when D is

permanently labeled and does not need to search all the nodes within a road network. However,

since its search space relies on the depth of the optimal path and the branching size, the search

speed increases exponentially in the number of nodes explored. This is the main obstacle for short-

est path search in large networks. To overcome this effect, Pohl (1971) proposes a bi-directional

method by searching from both forward and backward. This method decreases the size of the search

space effectively. Hart et al (1968) also formalized a heuristic named the A* Algorithm, choosing

nodes based on the cost from the start node (O) with a likely proximity to the destination (D).

This method effectively reduces the search space by reducing the number of node expansions, and

reduces the effect of combinatorial exploration by reducing the size of the base in the complexity

term. But the most efficient way till now to eliminate or minimize the effects of the combinato-

rial explosion in a large-scale network, is a Hierarchical Search method suggested in Smith et al

(1998), which works by classifying and exploring the roads in the network into smaller, more man-

ageable networks. This Hierarchical method offers the prospect of greatly reducing the size and

complexity of any search by simplifying the search through a series of levels. There is an empirical

time/performance trade-off between these algorithms. Dijkstra’s and Pohl’s Symmetric algorithms

guarantee optimality, which are suitable for small-sized road networks. While for a large-scale road

network, the A* algorithm, and especially the Hierarchical algorithm can significantly reduce the

search time while sacrificing accuracy.

For our model, if we employ Dijkstra’s algorithm, the whole procedure has a O(|A|2 log(|A|)

time requirement. This is reasonable for hazmat shipments as they are usually transported on na-

tional highway systems, like U.S. and interstate routes. According to the statistics from the Federal

Highway Administration, there are altogether 499 Interstate routes (Federal Highway Administra-

tion 2007) and 1001 US routes (Droz 2009) for all states, with an average of 30 national highways

traversing each State. So the road network for hazmat transportation is relatively sparse. For

small and middle sized networks, we can apply the Dijkstra’s algorithm or Pohl’s algorithms in our
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Figure 1: A Test Network for Hazmat VaR Problems

Table 3: Candidate Paths

Path Route

P 1 {1→ 2→ 3→ 6→ 9}
P 2 {1→ 2→ 5→ 6→ 9}
P 3 {1→ 2→ 5→ 8→ 9}
P 4 {1→ 4→ 5→ 6→ 9}
P 5 {1→ 4→ 5→ 8→ 9}
P 6 {1→ 4→ 7→ 8→ 9}

procedure to find the optimal VaR solutions. For large-scale networks, the Hierarchical algorithm

provides an efficient heuristic route choice method.

5 Numerical Example

Take the network shown in Figure 1 as example. It consists of 9 nodes and 12 arcs, offering 6

available paths from Origin 1 to Destination 9 (See Table 3).
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Figure 2: VaR Path Choices Under Different Confidence Level α

Let us take l1, for example; we have the CDF of risk as follows:

FR (r) =



0, r < 0

0.3, 0 ≤ r < 1

0.8, 1 ≤ r < 3

1, 3 ≤ r

The corresponding VaR of path l1 is:

V aRlα =


0, if 0 < α ≤ 0.3

1, if 0.3 < α ≤ 0.8

3, if 0.8 < α < 1

If we set confidence level α = 95%, the corresponding VaR value is 3. That means, we have at

least 95% probability to control the consequence brought by path l1 under value 3 once an accident

occurs. Or, in other words, the possibility of the path risk being larger than 3 is less than 0.5%.

But under α = 50%, the corresponding VaR value for path 1 is 1.

Similarly, we can get the different VaR values for each of the 6 paths under different confidence

levels. The corresponding VaR values of each candidate path are as displayed in Figure 2. For

α = 95%, with the VaR values of paths displayed in Table 4, we see that path l1 gives the optimal
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Table 4: VaRs Under Confidence Level 95%

Path l1 l2 l3 l4 l5 l6

V aRl0.95 3 6 8 6 8 4

Table 5: VaR Decision Matrix for the Six Routes Under Different α Levels

α

≤ 0.3 ≤ 0.4 ≤ 0.55 ≤ 0.6 ≤ 0.65 ≤ 0.7 ≤ 0.8 ≤ 0.9 < 1

P 1 0 1 1 1 1 1 1 3 3
P 2 0 1 1 1 3 3 3 4 6
P 3 0 0 1 1 1 1 2 6 8
P 4 0 0 0 1 3 3 3 4 6
P 5 0 0 0 0 0 1 2 6 8
P 6 0 0 0 0 0 1 2 4 4

l∗ l1, l2, l3,
l4, l5, l6

l3, l4, l5,
l6

l4, l5, l6 l5, l6 l5, l6 l1, l3, l5,
l6

l1 l1 l1

solution for O-D pair (1,9) at confidence level 95%.

Table 5 generates the VaR decision matrix for the six candidate routes under different α levels.

We can see that under different confidence levels, the worst risk route varies too. This is different

from the MM2 model proposed in Bell (2007), which gives a one-dimensional route choice vector

using the random sampling principle. Table 6 gives the optimal paths generated by the nine classic

risk models collected in our literature review.

The results of this numerical example illustrate that the optimal path choice should vary accord-

ing to different confidence levels, as shown in Figure 3. Actually VaR turns out to be a function of

α and varies with different α values as displayed in Figure 2. Therefore, the optimal route solution

varies under different α values too. This provides the shipment dispatchers broader route choices

according to their risk preferences, which may vary according to their judgment to the up-to-date

road situation as well as the public risk allowance. A risk-averse decision maker would prefer a

high confidence level, however, an optimistic decision maker may consider it good enough to control

risk within allowable confidence level. Speaking from a more strictly practical point of view, the
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Table 6: Alternative Risk Model Comparison for the Six Routes

Path lTR lPE lIP lPR lMM lMV lDU lCR lMM2

l1 1.1 6 0.7 0.84 3 4.1 0.0055 1.57 3.36
l2 1.9 14 0.7 1.09 6 17.4 0.0095 2.71 2.86
l3 1.9 17 0.6 0.97 8 28.15 0.0096 3.17 2.86
l4 1.65 14 0.45 0.84 6 17.15 0.0083 3.67 2.14
l5 1.65 17 0.35 0.72 8 27.90 0.0084 4.71 2.14
l6 1.05 11 0.35 0.59 4 10.30 0.0053 3.00 2.64

l∗ l6 l1 l5, l6 l1 l1 l1 l6 l1 l4, l5
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Figure 3: Path Choice Under Different α Values

confidence level should respect the up-to-date road situation and public preference. This is another

problem of multi-discipline views involving social science, humanities, environmental science, etc.

In our problem, we suppose that a rational confidence level can be determined by dispatchers or

governors when making routing decisions.

6 Case Study

We develop a case study in a transportation network around Albany and its nearby highway.

Albany, New York connects many major interstates and is a heavy hub for hazmat transportation.

There are eight major interstate and US routes traversing the Albany area and its neighborhoods:

I-90, I-890, I-87, I-88, I-787, US-20, US-9 and US-9W. 304,204 residents are located in the 10 towns,
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3 cities and 6 villages ((U.S. Census Bureau 2010)) with variant population density. All those form

a dense transportation network along those routes.

We built a transportation network composed of 90 intersections and 148 road segments. The

link accident probabilities are calculated according to road segment lengths. The function (25)

refers to the investigation summary of Abkowitz and Cheng (1988):

p = 10−6 × l. (25)

The link consequences are calculated according to population density within the neighborhood

around the links. Assuming the radius λ of spread of HM is 1 mile, the endangered area can be

described with a whole λ-neighborhood which is a concept developed by Batta and Chiu (1988).

Here the link consequence is calculated according to the function 26:

C = (πλ2 + 2× λ× l)× ρ, (26)

where ρ represents the population density in the neighborhood along the road segment (persons

per mile-sq). We collect the population data of the town where the road segment is located and

distribute the risk uniformly to the area. The road lengths and population statistics come from

Department of Transportation and Department of Commerce websites.

Based on Dijkstra’s algorithms, our two-stage solution is coded in Java 1.6.16 and run on a Intel

Core2 Quad CPU Q6600 2.40GHz computer system. Our computational experience reveals that

our procedure is of high efficiency and the computing time is within 5 seconds. We now discuss our

results.

We take O-D pair (1,22) as an example to illustrate the VaR model and compare its difference

from classic models. The same data sets are collected and tested under different confidence levels

to verify the accuracy of the classic models compared with the VaR model and to illustrate the

effectiveness of our algorithm. Tables 7, 8 and 9 contain results from three representative runs; they

each provide a comparison with the eight hazmat risk models contained in our literature review

section. Here in our example, we only display the result of PR model with parameter q = 2, and

MV model with parameter k = 0.5, and DU model with parameter k = 0.001. As shown in our
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result, TR, PE, PR, MV, and CR models generate routes along Route US-20; while the IP model

chooses a less accident probability route along NY-5; by contrast, the extremely risk-averse MM

model generates a least consequence route far from I-90 and US-20.

Round 1 proves that for a certain small confidence level α = 0.00, no risk models are effective

since all paths are risk-indifferent paths. The VaR values for all paths in Table 7 are zero, and the

algorithm for the VaR model happened to choose the same path as the IP model. In this case, we can

ignore the risk factor considered and follow other criteria such as population exposure, economic

loss, effects on commerce, and delays in transportation, for route choice. Another phenomenon

that caught our eyes is that, when confidence level α is relatively small, the VaR solution tends to

generate the similar result as the risk-neutral model like TR model. It accords to our expectation

that the decision maker intends to be optimistic and have more risk tolerance. With stricter α, it

is witnessed that our solution begins to predict the more risk-averse preference. The solutions from

the VaR model are comparative to the risk-averse models like PE, MV, and DU. When confidence

level α approaches to 1, our VaR model simulates the MM model, which represents the extreme

risk-averse preference. For the OD pair (1,22), while the confidence level α = 0.9999999, our VaR

model solution has the same risk as that of the MM model.

Another noticeable phenomenon is that, combining considerations of both risk analysis and

confidence level, the VaR model can generate different routes which represent the risk preference

of decision makers. Take Round 2 as example, where α = 0.999982, our VaR model generates a

route detour from the major routes I-90, I-890 and US-20, and the Albany City, to avoid the high

population density area. At the same time, it does not detour too much like the DU and MM

model which consume the transportation cost to an extent hardly acceptable for carriers. It turns

out to be a more reasonable route with less cutoff risks than other risk models under α = 0.999982.

The result of Round 3 is illustrated in Figure 5.

Subsequently, we output the difference between VaR and the classic models under all confidence

intervals. The VaR performances of the classic models for the OD pair (1,22) are provided in Table

10. Each of the above models predicts a certain risk preference under a certain confidence level. As

Table 10 displays, when the confidence level α is sufficiently small, all risk models behave similar

since the circumstance is optimistic enough to cause no risk at all to the shipment. But when

α > 0.9999706, those routes tend to bring various risk levels to the neighborhood. In the LPHC
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case like Hazmat transport when historical data can not be totally relied on, we take advantage of

the uncertainty tolerance of the VaR model to simulate the various risk preferences and generate

flexible and valid route choices for decision makers.

7 Conclusions and Future Research

This paper proposes a new hazardous material transportation model based on the risk measurement

commonly used in financial application, Value-at-Risk (VaR). This model is developed on a strategy

that controls the social risk carried by the shipment. It is more general than the traditional

deterministic risk models. The VaR model introduces a new factor of confidence level α which

represents the decision maker’s risk preference. The objective of the VaR model is to control the

worst risk experienced by a shipment within a certain confidence interval. The optimal VaR path

varies under different α and is not necessarily the optimal expected risk path. The VaR calculation

method and the optimal path algorithm are provided and demonstrated in this paper.

For each shipment, the decision maker can find the upper and lower bounds of a series of

confidence intervals (αk, αk+1] ⊆ (0, 1), and create a decision matrix for route choices. The VaR

values become zero for all paths when the confidence level α is close to 0, and the maximum risk

model when α is close to 1. This model provides decision makers a more flexible tool to decide the

optimal path according to their judgment of the real-time road situation and its subsequent risk

level by adjusting the confidence level α. Further the VaR model may be used in combination with

other models. One may list several paths with better VaR values, and choose a path satisfying a

certain criteria based on other hazmat routing models. We will provide an algorithm to provide

such better paths based on VaR in our subsequent research article.

While this paper emphasizes the single-trip hazmat shipment problem, further development

of the VaR model should consider the mitigation of the social risk for the multiple-trip hazmat

transportation problem, combined with broader decision factors like costs or schedules of shipments,

or constraints like risk equity among different geographical zones.
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Table 7: A Representative Run of Hazmat VaR Model for a Given Value of Confidence Level, α -
Round 1

Round 1: α = 0, O-D pair (1,22)

Model Optimal Path OFV V aRlα

TR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 0.16 0.0
PE [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 3050.84 0.0
IP [1, 74, 78, 42, 82, 27, 20, 21, 10, 22] 2.10E-5 0.0
PR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 129188.02 0.0
MV [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 1525.58 0.0
DU [1, 74, 75, 76, 77, 79, 23, 24, 25, 33, 34, 7, 8, 9, 84, 21, 10, 22] 17449.37 0.0
MM [1, 74, 75, 76, 80, 23, 24, 25, 26, 34, 7, 8, 9, 10, 22] 22617.61 0.0
CR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 6377.27 0.0

VaR [1, 74, 78, 42, 82, 27, 20, 21, 10, 22] Pr[R(1,22) > 0] ≤ 1− α = 0.00%

Pr[R(1,22) ≤ 0] > α = 100%

(OFV: the corresponding optimal Objective Function Value)

Table 8: Representative Run - Round 2

Round 2: α = 0.999982, O-D pair (1,22)

Model Optimal Path OFV V aRlα

TR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 0.16 1266.82
PE [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 3050.84 1266.82
IP [1, 74, 78, 42, 82, 27, 20, 21, 10, 22] 2.10E-5 10683.22
PR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 129188.02 1266.82
MV [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 1525.58 1266.82
DU [1, 74, 75, 76, 77, 79, 23, 24, 25, 33, 34, 7, 8, 9, 84, 21, 10, 22] 17449.37 6001.57
MM [1, 74, 75, 76, 80, 23, 24, 25, 26, 34, 7, 8, 9, 10, 22] 22617.61 8354.95
CR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 6377.27 1266.82

VaR [1, 70, 45, 71, 58, 59, 4, 5, 17, 18, 19, 20, 21, 10, 22] Pr[R(1,22) > 837.14] ≤ 1− α = 0.0018%

Pr[R(1,22) ≤ 837.14] > α = 99.9982%

(OFV: the corresponding optimal Objective Function Value)
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Table 9: Representative Run - Round 3

Round 3: α = 0.9999999, O-D pair (1,22)

Model Optimal Path OFV V aRlα

TR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 0.16 37263.97
PE [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 3050.84 37263.97
IP [1, 74, 78, 42, 82, 27, 20, 21, 10, 22] 2.10 E-5 69302.89
PR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 129188.02 37263.97
MV [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 1525.58 37263.97
DU [1, 74, 75, 76, 77, 79, 23, 24, 25, 33, 34, 7, 8, 9, 84, 21, 10, 22] 17449.37 22518.80
MM [1, 74, 75, 76, 80, 23, 24, 32, 33, 34, 7, 8, 9, 10, 22] 22617.61 22617.61
CR [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 6377.27 37263.97

VaR [1, 74, 75, 76, 77, 79, 23, 24, 25, 26, 34, 7, 8, 9, 10, 22] Pr[R(1,22) > 22617.61] ≤ 1− α = 0.00001%

Pr[R(1,22) ≤ 22617.61] > α = 99.99999%

(OFV: the corresponding optimal Objective Function Value)
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