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Abstract

This paper presents a methodological framework to identify population-
wide traveler type distribution and simultaneously infer individual travelers’
Origin-Destination (OD) pairs, based on the individual records of a shared
mobility (bike) system use in a multimodal travel environment. Given
the information about the travelers’ outbound and inbound bike stations
under varied price settings, the developed Selective Set Expectation Maxi-
mization (SSEM) algorithm infers an underlying distribution of travelers
over the given traveler “types,” or “classes,” treating each traveler’s OD
pair as a latent variable; the inferred most likely traveler type for each
traveler then informs their most likely OD pair. The experimental results
based on simulated data demonstrate high SSEM learning accuracy both
on the aggregate and dissagregate levels.

Keywords Origin-Destination estimation • Traveler preferences • Ex-
pectation Maximization • Probabilistic inference • Multimodal route
choice • Bike Sharing Systems • Shared Mobility Systems

1 Introduction

Bike sharing systems are gaining prominence in the United States and world-wide
as a viable shared mobility option. In driving green transportation initiatives,
such systems are expected to alleviate the congestion in urban areas and provide
commuters with additional travel utility as well as health and socio-demographic
benefits. Researchers position bike sharing systems as a solution to the “first
and last mile problem,” stimulating users to switch to public transit modes and
avoid relying on personal vehicles for reaching transit stations (?). The main
challenge of shared mobility system operation is that, as many travelers tend
to follow similar routes, the decreasing vehicle counts in trip origin areas (and
parking spot counts in destination areas) cause vehicle imbalance across multiple
stations in these areas. These operational issues are currently handled by system
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managers in a reactive manner; however, recent research (Haider et al., 2014)
suggests a more pro-active solution—a strategic offering of incentives to travelers
so as to reduce the imbalance build-up. The challenge is that in such efforts, the
knowledge of travel demand and traveler preferences is critical for calculated
incentive (pricing) planning.

Extensive analyses of network data and customer surveys have been con-
ducted to understand traveler needs on an aggregate level (Vogel and Mattfeld,
2010). However, analytical and mathematical optimization models found in
the literature have had limited success inferring individual traveler behavior
(Vogel and Mattfeld, 2010). Descriptive analyses of shared vehicle usage patterns,
reported in the recent past (Froehlich et al., 2009; Borgnat et al., 2009; Vogel
and Mattfeld, 2010), may help this cause.

In order to parametrize a Mixed Multinomial Logit model (Hensher and
Greene, 2003), often used to describe traveler routing decisions (Ben-Akiva and
Lerman, 1985; Bovy and Hoogendoorn-Lanser, 2005; Wardman, 2004), true
OD pair information is required. The main deficiency of OD pair estimation
approaches that neglect the multimodal nature of transit is that they lose the
information of demand elasticity and flexibility. Prior research has examined
the problem of disaggregate multimodal (bus and metro) OD matrix estimation
at the stop level (Munizaga and Palma, 2012), using automatic fare collection
system records of boarding counts for two different transit mode systems. Stop-
level OD pair estimation based on system data (e.g., traffic count, passenger
count) has also been carried out (Abrahamsson, 1998; Lam et al., 2003; Wong
and Tong, 1998; Li and Cassidy, 2007), including a study that exploited fare
card transaction data (Lee and Hickman, 2014). However, no method exists that
does disaggregate (i.e., individual-based) inference of traveler preferences from
stop-level OD pair information or automated fare collection, and then uses these
inferred preferences to distill “true” (i.e., not stop-level) OD pairs.

The OD estimation problem is paid much attention in transportation modeling
and planning research. This problem is often referred to as the trip demand
estimation problem, where an estimate of OD trip demand matrix is to be
computed using traffic flow data and other available information (Cascetta
and Nguyen, 1988). Several model formulations and heuristic methods have
been proposed so far: they employ diverse theoretical approaches including the
minimization of the sum of squares of the predicted and observed OD matrix
value differences (Cascetta and Nguyen, 1988; Bell, 1991), column generation
(Garcia-Rodenas and Verastegui-Rayo, 2008; Sherali and Park, 2001), bi-level
formulations (Yang, 1995; Lundgren and Peterson, 2008), entropy/information
based inference (Xie et al., 2010; van Zuylen, 1978; Xie et al., 2011), and
path flow estimation (Nie et al., 2005; Chen et al., 2010; Ryu et al., 2014).
Bayesian methods, exploiting the properties of certain families of parametrized
distributions (Maher, 1983; Tebaldi and West, 1998; Mahmassani and Sinha,
1981; Hazelton, 2008; Castillo et al., 2008), have found use for updating the trip
generation parameters and generating the trip matrix. Notably, recent work
using Bayesian inference combines OD estimation with route choice behaviour
(Sun et al., 2015) to assign passenger flows in networks. There, a route choice
model is first developed, and then, using observable passenger data, the model
parameters for the route choice model are calibrated.

The problem attacked in the present paper is even more complex, as it
involves two unknowns: the trip ODs and the traveler preferences expressed via
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a set of feasible traveler types. In addition, the existing approaches are based on
aggregate system (zonal/station/stop) level OD estimation. Meanwhile, for more
effective pricing/incentive program implementation, the information of individual,
i.e., disaggregate, traveler ODs and preferences is crucial, particularly for bike
sharing systems and more broadly shared-mobility systems. The presented
framework is developed to estimate both the individual trip OD and traveler
types, using Bayesian logic, which is enabled by collecting multiple responses of
same individuals (through user id or cards). It allows one to infer the OD-demand
not at the station level but at the more granular traveler (“true” OD) level,
exploiting a data driven approach, coupled with Bayesian learning, that enables
the mining of trip details for each individual traveler.

This paper presents a methodological framework for traveler preference
(represented as a traveler type) and OD pair inference in complex multimodal
transportation systems. The developed Selective Set Expectation Maximization
(SSEM) algorithm allows for estimating the unknown traveler type distribution by
treating the OD pairs as latent variables, using the information about the changes
in traveler route choices under varied circumstances. Due to the flexibility of
system operation and the dynamic nature of the bike sharing systems, such
systems offer a convenient test bed for implementing the presented estimation
method. The estimation framework relies on the observed traveler responses
to pricing incentives, road closures or extreme weather events. Such partial
route information pieces can be collected from automatic fare collection system-
type data (or from GPS or user pass-card data) as travelers respond to system
perturbations. Using the partial information about a traveler’s route under
multiple price settings, it becomes possible to identify eligible OD points from a
set of points in a geographical zone with certain belief/probability. We thereby
manage to gauge the sensitivity of travelers to incentives by learning the travel
utility - traveler type - distribution over the population of travelers. This
distribution indicates how the travelers valuate travel options by time, price and
convenience: a combination of the disutility weights for these respective measures
defines a traveler type; the feasible range of the traveler types is assumed to be
discrete, finite and given. Then, one can infer the bikers’ origins and destinations,
by first inferring the distribution of the traveler types in the entire population.
A Bayesian model is used in the SSEM algorithm to quantify the likelihood of
the observed data and the model parameters are adjusted in an iterative manner
to maximize this likelihood.

The SSEM algorithm works to assess the sensitivity of bike-using travelers
to pricing incentives, offered at outbound and inbound bike stations and varied
over multiple scenarios. The algorithm can be viewed as an extension of the
conventional Expectation Maximization (EM) algorithm. The EM algorithm
has an issue of favoring the extreme traveler types: from each pricing scenario,
it tends to conclude that travelers are either too sensitive or not-at-all sensitive
to pricing incentives. The SSEM algorithm, on the other hand, infers a range of
suitable traveler types from each scenario; an intersection of these ranges for a
given traveler over all the scenarios is taken as the most likely traveler type for
this traveler. The SSEM algorithm is also enhanced by the data pre-processing
stage that effectively screens out infeasible route choice solutions for each traveler.
In the reported computational studies, the SSEM algorithm is able to infer the
true OD pairs for the travelers with the accuracy of about 75 % by correctly
learning the population’s sensitivity to pricing incentives.
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The remainder of the paper is structured as follows. Section 2 describes the
estimation framework, its assumptions and different components for inference.
Section 3 dives into the details of the SSEM algorithm design. Section 4 explains
the creation of the multimodal environment and the agent based simulation
model for generating the data to testing and evaluation. Section 5 provides the
results of the SSEM inference along with comparison of the estimated travelers’
OD pairs against the true OD pairs. The paper is concluded by Section 6
which discusses the future research directions. A parallelized implementation of
the SSEM algorithm is provided in the Appendix section—this implementation
improves the method’s scalability and speed with large data sets.

2 Model Description

The presented methodology relies on the accepted models of traveler routing
choice behavior. It is assumed that (a) a population of travelers uses a transit
system that is multimodal, i.e., the transportation infrastructure is a combination
of multiple public transit modes such as bus, metro, bike and pedestrian walkways,
(b) the travelers have different preferences for what they consider a “good” route,
and (c) the travelers are rational decision-makers who readily adapt to the
changing travel environment.

Figure 1 outlines the steps taken to develop and test the presented estimation
framework: the partial traveler routes are assumed to be first observed, then
processed and fed into the SSEM algorithm; the following sections give the
detailed description of each step. For the convenience of keeping track of the
notations used, the reader is welcome to refer to Table 1: it appears later in
this section, after most of the notations have been introduced in the text. We
now begin describing the assumed traveler routing choice model, captured in
the traveler type distribution, and proceed with explaining the logic of the OD
inference approach leading to the SSEM algorithm.

Table 1 presents the notation required to describe our estimation framework.

2.1 Multinomial Route Choice in Multimodal Travel

This section describes the Multinomial Logit (ML) model of traveler decision-
making in multimodal transportation systems: this model expresses the proba-
bilities for the route alternatives to be selected by a traveler, as a function of the
traveler’s preferences. More specifically, these choice probabilities are a function
of the disutility values of the routes, weighted so as to be expressed in terms of
cost in dollars as described by Wardman (2001).

Let w be an OD pair for a traveler with a given set of feasible route choices
R(w), for which the disutility values are all pre-computed. As per the ML model,
the probability that a traveler chooses a route r ∈ R(w) for a given disutility
vector dr(p) under a certain pricing setting p can be expressed as

P (r(p)) =
e−(dr(p))∑

r′∈R(w) e
−(dr′ (p))

, (1)

where dr(p) is the disutility calculated for using a particular route computed by
adding the measurable travel components of the route segments of different transit
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Table 1: Mathematical Notation

t traveler index
T Set of all travelers
p price setting index
P Set of all price settings
obs one bike segment observation
obs Set of all bike segment observations
(i, j) bike check-in and check-out stations (i.e., bike route seg-

ment)
(i, j)obs

t bike check-in and check-out stations (i.e., bike route segment)
of traveler t for a given day observation, obs

βmode
time , β

mode
price weights of travel cost and time for each mode

Tmode, Pmode Travel time and cost for a particular mode
µ = [βmode

time , β
mode
price ] A particular traveler type vector of weights multimodal

travelers
M Set of different traveler types µ
M t traveler type set for traveler t
M t(p) traveler type set for traveler t under price setting p
Θ Traveler type distribution, µ ∼ Θ
Θ(n) Current best estimate of traveler type distribution at itera-

tion n
w true OD pair for a multimodal traveler
wo, wd true origin and destination of OD pair w
Ωt Set of eligible OD pairs for multimodal traveler t
r a multimodal route
dr(p) Disutility of route r under price setting/scenario p
R(w) Set of route alternatives for an OD pair w

δ
w,(i,j)
µ (p) OD-bike segment incident indicator under pricing p for

traveler type µ
∆µ(p) OD-bike segment incidence matrix under pricing p for trav-

eler type µ
∆(p) OD-bike segment incidence matrix for all traveler types µ
PΘ(µ) Probability value for traveler type µ under the unknown

traveler type distribution Θ
P (w) Prior probabilities for eligible OD pair w
P (i, j)µ Logit probability of using bike segment (i, j) for traveler

type µ
Plogit(w|µ)pt Logit probability for OD pair w under the given traveler

type µ for multimodal traveler t under price setting p
$r Path correction factor for route r
Bpt (w) Bayes probability for eligible OD pair w for traveler t under

price setting p
Zµ Normalizing constant for logit probabilities under preference

category µ
Z ′ Normalizing constant for Bayes probability
Q(Θ,Θ(n)) Lower bound or expected log likelihood to be maximized at

iteration n
Bp Multi-dimensional array for Bayes probability for all travel-

ers under price setting p
Lp Multi-dimensional array for Logit probability for all travelers

under price setting p
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Partial Route Observation

Route alternatives
for eligible ODs

Eligible OD set
for travelers

Selective
Preference Set

OD assignment
for travelers Inputs

Selective Set Expectation Maximization algorithm

Preference distribution inference

OD inference

Figure 1: Framework for inferring traveler type distribution and OD pairs

system modes multiplied by the travelers’ preference of each travel measurement.
The negative sign accounts for the disutility term and (1) gives the probability
of choosing the route with maximum utility (and minimum disutility). The
disutility of each route in the route choice set of a traveler, under a given price
setting p, is expressed by the following linear disutility function

dr(p) =
∑
mode

(
βmode

time Tmode + βbike
price (Pmode

entry + Pmode
exit )

)
, (2)

where βmode
time and βmode

price are the factors (weights) for travel time Tmode
time on any

mode (bus, metro, bike and walking). The price variables in the linear disutility
model, Pentry and Pexit, are one-time charges a bike user incurs while picking
up or dropping off a bike at a hub station. Different pricing strategies can be
incorporated based on the travel length and time for which the bike is used. In
the current disutility model, Pentry and Pexit are independent of the distance or
time traveled. The disutility of route r under the scenario with price setting p is
expressed as dr(p). Each traveler thus solves a utility-maximization problem,
or equivalently, the disutility-minimization problem. A notable advantage of
using the disutility approach is the ease of using shortest path algorithms, e.g.,
Dijkstra’s or Floyd’s, to compute the best route(s) under a given price setting
for route alternative generation.

Given the logic behind the multi-modal route/mode choice behavior, it
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is acknowledged that travelers are heterogeneous decision makers. That is,
travelers can be of different types, with each type characterized by its own unique
combination of weights (parameters of the disutility model), µ = [βmode

time , β
bike
price].

All the feasible traveler types are assumed to be contained in a discrete finite
set M ; the distribution of the traveler population over set M is assumed to be
parametric, with parameter vector Θ.

Indeed, it is natural to assume that travelers differ from each other, and
that it is not immediately known how each individual traveler valuates travel
disutility or even what percentage of the traveler population shares the same
views in disutility valuation. The introduction of the traveler type distribution
that parametrically specifies PΘ(µt = µ), µ ∈M , for a random traveler t, allows
us to express this uncertainty in a most general, realistic and useful way. As
will be shown, the whole distribution PΘ(µ) and the weight combination for any
particular traveler can be inferred, given the observations of routing choices of a
large number of travelers. The inferred type for each traveler can directly inform
the individual OD estimation and population-wide incentive/pricing planning:
the inferred ODs and types will be sufficient for identifying bike station locations
where certain pricing/incentive strategies can be expected to have high impact
on the nearby travelers. Moreover, the developed theoretical framework can be
further used for the specification of any particular type of utility function (of the
researcher’s choice); such parametric functions can involve any complex measures
adopted in multi-modal transit analysis, e.g., level of service, time spent walking,
time spent waiting, time spent in transfer, etc., as well as components that
are crucial for understanding bike user behavior, e.g., elevation gain, weather,
queueing at stations, etc.

Proceeding with the discussion of modeling assumptions, we posit that
all travelers differ by their traveler types but choose routes deterministically.
Specifically, it is assumed that a traveler always takes the minimum disutility-
cost route, given their traveler type. The factors such as in-vehicle travel time
and pricing are considered as parts of the traveler type µ ∈M . The traveler
population is heterogeneous, with a distribution over the traveler type set µ
describing the whole population. We now define route set R(w) as the set of
routes for OD pair w, generated under different pricing settings for a traveler
under the assumption that the traveler type µ remains the same across these
settings for a particular traveler. This assumption is quintessential for distilling
the OD pair of a traveler based on their behavior under different (pricing)
scenarios.

Note that in modeling the consumer’s preferences over different route alter-
natives in a choice set, models based on Random Utility Theory (RUT) are
extensively used by researchers in social sciences and economics. In the devel-
oped estimation framework, travelers are assumed to make routing decisions
in the same deterministic manner. The Random Utility Theory (RUT) posits
that a consumer is a rational decision maker who chooses an alternative that
provides them with the maximum utility (Li et al., 2013); its advantages are
highlighted in a comparative study of different decision theories used to model
route choice behavior (de Moraes Ramos et al., 2011). We resort to the RUT
model due to its intuitive logic and straightforward implementation for route
choice decision-making modeling.

We adopt a basic utility function that effectively captures the price sensitivity,
and allows for learning the traveler type distribution. Observe that a traveler with
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a more price-favoring traveler type is more likely to change routes as compared to
a traveler with a more time-favoring traveler type; the price vs. time sensitivity
becomes a defining number for the traveler, reflected in their behavior across
multiple scenarios (recall that the set of parameters

[
βmode

time , β
mode
price

]
comprises

a traveler type, µ). Note that other factors that could affect the commuters
utility valuation may include mode preference, weather conditions, waiting time,
egress time, convenience based on trip purpose (leisure, business, commute etc.),
economic and social variables. For example, the generalized distutility cost of
the following can be used,

dr(p) = βmode
wait ×Wmode(p) + βmode

time × Tmode(p) + βmode
price × Pmode(p)

+βmode
LOS × Lmode(p) + βnum ×N,

where βmode
wait , βmode

time , βmode
price , and βmode

LOS are the weights for the waiting time

Wmode(p), in-transit travel time Tmode(p), price Pmode(p), and level of service
Lmode(p), for each mode respectively, where p is the price; finally, βnum is the
weight for the number transfers N .

Note also, that the increase in the number of variables does not affect
the applicability of the proposed framework, since the number and the weight
combination of traveler types are set exogenously. Given more detailed real-world
data, an analyst can estimate these parameters and construct a more intricate
disutility model with variable dependencies to more closely model the decision
making process of multimodal travelers—this indeed is the work focus for many
travel economics researchers. The model parameters and assumptions in the
present paper are set simple for the convenience of setting up and interpreting
the results obtained with a synthetic testbed. Indeed, the objective of this paper
is to highlight the theoretical aspects of the presented framework and test its
inferential power; the synthetic data-based experimental investigation is more
valuable for this purpose, since synthetic data here also serve as a reliable ground
truth, against which the inference algorithm outputs can be compared.

Once the disutility values of the routes are obtained from (2), the probability
that a particular route will be chosen by a traveler can be computed using the
logit choice model function (1). Note that more complex choice probability
models can also be adopted at this stage (e.g., see ?), however, we use the logit
model for the ease of presentation and without loss of generality. One issue
with the basic logit model in (1), is that it assumes independence between the
route alternatives. In other words, the choice set R(w) is assumed to be made
of mutually exclusive routes, i.e., those that do not share any route segments.
Hence, a correction factor must be incorporated while computing the disutility
for each path. The Path Size (PS) logit model, developed by Ben-Akiva and
Bierlaire (2003), accommodates for such a correction factor in the disutility
values,

$r =
∑
a∈τr

La
Lr

1

Na
=
∑
a∈τr

La
Lr

1∑
j∈R(w)

δaj
, ∀ r ∈ R(w) .

In the above formulation, $r is the path size correction factor for route r; the
term La is the length of the link a overlapping the segments of route r denoted
by τr; the length of route alternative r ∈ R(w) for the eligible OD pair w is
expressed by Lr; the number of paths in the route set R(w) for the eligible OD
w using the link a is denoted by Na, where Na =

∑
j∈R(w) δaj ; the indicator
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variable δaj is set to one if link a is contained in the path j and to zero otherwise.
With this correction factor incorporated into the basic logit model (1), the PS
logit model becomes

P (r(p)) =
$r e

−(dr(p))∑
r′∈R(w) $r′ e−(dr′ (p))

.

2.2 Bayesian Approach to OD-Pair Inference

We now describe the Bayesian approach to inferring the true OD pairs that
employs the ML model of Section 2.2. The Bayesian approach makes use of
the fact that bike route data can be collected for each traveler individually (i.e.,
at the disaggregate level), by matching their trip records over multiple system
usage instances (e.g., by the member pass-card number or by tracking bikes by
GPS for a specific member). Once the bike segment information is observed,
Bayes rule can be used to describe a mathematical structure, which gives the
probability of an OD pair being the true OD from the eligible OD set under the
information of the observed bike segment and traveler type distribution.

Given an observation of an individual using bike segment (i, j)obs
t as part of

at least one of their feasible routes, let Ωt = {w : ∃r ∈ R(w) s.t. (i, j)obs
t ∈ r}

denote the set of eligible OD pairs for traveler t. By Bayes Rule, for any OD-pair
w ∈ Ωt, the conditional probability that it is the individual’s true OD-pair (as
opposed to any other one), given a vector of choice model parameters Θ for the
traveler type distribution and the fact he/she chooses bike segment (i, j)obs

t , can
be expressed as

P (w|Θ, (i, j)obs
t ) =

P (w)
∑
µ∈M P ((i, j)obs

t |µ,w)PΘ(µ)∑
w∈Ωt

P (w)
∑
µ∈M P ((i, j)obs

t |µ,w)PΘ(µ)
, (3)

where P (w), w ∈ Ωt, are prior probabilities that are assumed equal, i.e., meaning
that each eligible OD pair is equally likely if no information is available that can
help differentiate them (note that such information could come, for example,
from census data, allowing one to scale the priors by the total population around
their route origins and the number of available workplaces or services around
their route destinations). Probabilities P ((i, j)obs

t |µ,w) are the route choice
probabilities given by (1) for the observed bike segment (i, j) and eligible OD-
pair w under a given traveler type µ ∈ M . The probability associated with
choosing a traveler type from the traveler type distribution is scaled into (2) as
PΘ(µ), where Θ is the vector of parameters for the distribution. The traveler
type distribution weights can be discrete or continuous functions of Θ (while the
range of this distribution itself is discrete and finite). Since the input traveler
type distribution is unknown, we take the expected value for observing the bike
segment (i, j)obs

t over the traveler type distribution Θ.
The described probability structure will be exploited in the maximization

step of the SSEM algorithm. The route choices of the same individual are
observed in multiple scenarios—over multiple days and under multiple price
settings. Assume that the observations are collected over the same periods
(e.g., on the same weekdays), to ensure that the travel conditions as well as the
travelers’ OD pairs remain the same over all the observations.

We proceed with explaining the Bayesian logic exploited for OD pair inference.
Figure 2 depicts some eligible origins and destinations around the bike station
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Eligible Origins Eligible Destinations

bwo bwd

Route alternative

Bike segment

wo wd

Figure 2: Eligible OD-pairs and route alternative setting for Bayesian inference

entry and exit points, together with the respective route alternatives, out of
which at least one route includes the bike segment in red. An origin point
which is closer to the observed bike segments from where the traveler enters
the bike sharing system and the destination point which is closer to the bike
segments where the traveler leaves the bike sharing system have a higher chance
of being the true origin and destination locations. The level of inference that we
can make is only restricted to the locations around bike stations, since we are
observing only the partial route data (bike segments traversed) for the traveler.
Given that any complete route may be multi-modal, one can only infer where
a traveler arrives from to pick up a bike and where they depart to after they
surrender it. Eligible OD locations are seeded inside a geographical zone spanned
by the transportation system of interest, i.e., each residential building (or block
centroid) and each alternative transportation mode stop (metro, bus station,
etc.) that is within the walking distance of any bike station is eligible.

The subsequent subsections discuss the eligible OD set creation and route
choice generation for these ODs which serve as the input for the estimation
framework.

2.3 Eligible OD Set Generation

The learning algorithm for demand estimation requires a set of eligible or
candidate origin-destination pairs for each bike traveler from which the true OD
pairs for a given traveler will be distilled with certain belief or probability. In
this subsection, we define a strategy to generate an eligible set of OD pairs for
each traveler based on the bike segment observation of travelers.

One approach to generating an eligible OD set is to directly sample the
observations of travelers. Prior knowledge about an eligible set of OD pairs can
be obtained using passenger surveys or travel forecasting data. However, such
survey data is difficult to acquire and organize because of the enormity of the
bike sharing system. The second methodology for defining an OD pair set relies
on observing the routing choices of travelers. The all pair shortest paths (APSP),
with a feasible route alternative for each such path for every OD pair, are found
in the network, for multiple price settings. Based on the traveler’s observed bike
segment, those OD pairs are chosen which include the observed bike segment in
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at least one of its route alternatives. This method may be able to capture the
set of eligible OD pairs completely, but suffers from being too computationally
expensive and complex to handle.

In order to avoid enumerating all the point on the map as the potential
endpoints of a traveler’s true route, a zone of eligible origins and destinations
can be defined as shown in Figure 2: the circles of a pre-set radius around the
entry and exit bike stations serve this purpose well. Once the OD pairs have
been generated for each bike segment, we assign the ODs for each traveler by
following the steps below.

In the assignment process, the OD pair which includes a traveler’s observed
bike segment as part of at least one of its route alternatives, across all the
scenarios, is called “eligible” for the traveler. The traveler’s true OD is expected
and assumed to be included in the eligible OD set. Note that ensuring this in
practice might turn out rather time consuming; then, further steps might be
required to reduce the size of the resulting set: prior knowledge of population’s
habits, zonal attraction characteristics, and forecasting analyses can be used to
this end. Next, aggregated over all the scenarios, an OD-Bike segment matrix is

constructed, for each of the distinct traveler type values. Let δ
w,(i,j)
µ (p) be the

incidence indicator of the event “Route r(w) ∈ R(w) for OD w contains bike
segment (i, j),” under the pricing strategy p for traveler type µ, and ∆µ(p) be a
binary matrix whose elements are one if a specific bike segment is a part of the
OD pair’s route alternative and zero otherwise,

∆µ(p)[w, (i, j)] =

{
1 if (i, j) ∈ r(w)

0 if (i, j) /∈ r(w)
∀ µ ∈M .

Once the matrices for each traveler type and price combinations are constructed
for a given traveler, the traveler’s route changes are observed under multiple
price settings. The union of the observed bike segment column vectors from the
different pricing settings gives the eligible set of OD pairs for the traveler. Let
∆(1), ...,∆(p), ...,∆(|P |) denote the block matrices representing the OD-Bike
segment matrix for price setting p under a given traveler type for |P | scenarios.
The structure of such a block matrix under a given price setting is given,

∆(p) =

µ1 µ2 · · · · · · · · · · · · · · · µ|M | 1 · · · 0 1 · · · 0 · · · 1 · · · 1
...

...
...

...
...

...
...

...
0 · · · 1 0 · · · 0 · · · 1 · · · 0

.

With the observed traveler, t, of traveler type µ, the eligible OD set can be
found as an intersection of the column vectors from each observation (i, j)obs

t as

∆(p1)[(i, j)obs1
t ]∩∆(p2)[(i, j)obs2

t ]∩ ...∩∆(p|P |)[(i, j)
obs|P |
t ], where ∆(p)[(i, j)obs

t ]

is the column of ∆(p) that corresponds to bike segment (i, j)obs
t given the day’s

pricing strategy p. In order to identify the eligible OD set, we take the minimum
across all the scenarios,

min

(1
...
1


0

...
1

 ...
0

...
1

) ≡
0

...
1

 .
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The resultant vector obtained as a union of the column vectors over all the
scenarios contains all the eligible OD pairs for a traveler. This operation is
carried out for every traveler in the observed population.

The eligible OD sets generated for each traveler described in this section is
then fed into the learning algorithm from which the most likely OD pairs for
the passengers are found. The eligible OD set is followed by route alternatives
generation for each and every OD pair explained in the next section, out of
which at least one of the alternatives may contain the observed bike segment.
The route generation methodology is explained in greater detail in the next
subsection.

2.4 Route Choice Set Generation

This section covers a computationally tractable method adopted for the gener-
ation of route alternatives that a traveler has under the multinomial discrete
choice model based on RUT. These alternatives form a discrete finite choice
set. Recall that a route can consist of any combination of walking, biking and
other public transit mode-based travel segments. The demand estimation model
requires a set of reasonable routes, R(w), for each OD pair w, generated as
described in the previous subsection.

Path choice generation can be approached deterministically or stochastically.
Deterministic algorithms including the labeling approach by ?, link elimination by
J.A. et al. (1993), link penalty by de la Barra et al. (1993), constrained k-shortest
path approach by Van der Zijpp and Catalano (2005) and heuristics based on
branch and bound by Friedrich et al. (2001); Lanser (2005); Prato and Bekhor
(2006) have been used extensively by the researchers in the domain of route
choice set generation. Frejinger and Bierlaire (2007) suggest a recently developed
random sampling methodology to generate route alternatives and provide a
stochastic path generation algorithm. ? provides a simulation approach to route
choice alternative identification, with the routes constructed with links drawn
from certain probability distributions. Another stochastic approach suggested by
Bovy and Fiorenzo-Catalano (2007) provides a more generalized simulation-based
method for route choice generation by considering generalized cost functions in
terms of utility values. The route choice generation algorithms based on both the
deterministic and stochastic approaches can be computationally expensive to be
used for the present work, since our route alternatives have to be generated for
each and every individual in the travel population, and then, lumped together for
further analysis. Also, our feasible route alternatives must contain bike segments
as part of all the routes for the estimation framework to work.

A computationally tractable methodology is now presented for route choice
generation. For each eligible OD pair w, generated for the respective bike
segments as explained in the above section, let wo denote the origin node and wd
denote the destination node. For every pair wo and wd, the bike stations close
to these nodes are identified, with a limit set for the number of bike stations to
be considered around each node. After identifying the respective bike stations,
corresponding to the origin and destination nodes, a route is generated as a
combination of the four nodes wo, wd, i and j, where i and j represent the bike
stations near the origin and destination nodes, respectively, for the OD pair w.
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A route alternative constructed in this manner can be expressed as

r(w) → SP (wo, i) + SP (i, j) + SP (j, wd) ,

where SP (· , ·) stands for the shortest path between a pair of nodes. Since the
shortest paths found based on disutility valuation may differ across scenarios, the
routes should be generated separately for each scenario, for every combination
of the candidate bike stations near wo and wd. Figure 3 illustrates the route

Nearby Origin Bike Hubs Nearby Destination Bike Hubs

wo wd

Bike segment 1

Bike segment 2

Route alternative 1

Route alternative 2

i j

Figure 3: Route choice set generation for an eligible OD-pair

choice set formation process, with two route alternatives shown for an OD-pair
(wo, wd). The size of the route choice set must be carefully selected for any given
navigation or transportation system analysis: for computational tractability
reasons, the number of alternatives in the route choice set cannot be large - we
set it equal to two. Note, however, that this restriction allows the inference
algorithm to consider around 50 distinct alternative OD pairs for every observed
traveler.

This section described the details of the inputs and intermediary processes
required for generating the inference data to be fed into the SSEM algorithm.
The selective preference set, which is also an input to the SSEM algorithm, will
be discussed next. To estimate the most likely value of the parameters Θ for
the traveler type distribution, a set of eligible ODs with route alternatives for
each OD pair needs to be supplied to the SSEM algorithm which will infer the
traveler type distribution and use this inferred distribution to learn the true
travel OD-pairs by utilizing the observations across the entire travel population
under different price settings.

3 Selective Set Expectation Maximization
(SSEM) Algorithm Design

This section presents the details of the SSEM algorithm which iteratively esti-
mates the unknown parameters of the traveler type distribution by recovering
(learning) the hidden OD pairs the observed travelers. SSEM is a development
of the conventional Expectation Maximization (EM) idea first described by
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Dempster et al. (1977). The traditional EM algorithm cannot be successfully
applied to the presented problem. This is because in each pricing scenario, there
exist multiple traveler types that support an observed traveler’s route choice; the
EM makes a pick from this vector set and then cannot correctly fuse the inference
results over all the scenarios, favoring the extreme traveler types (extreme in
terms of sensitivity to cost incentives). SSEM, on the other hand, stores the
likely solutions to all the scenarios as sets, and makes inference based on the
intersection of these sets.

The Maximum Likelihood Estimator (MLE) maximizes the likelihood of the
data as a function of model parameters. The maximization of the likelihood
can be achieved by the first derivative principle. For many problems, however,
the first derivative is difficult to evaluate under latent variables, and hence, one
has to resort to more elaborate techniques. The SSEM algorithm is used in the
case where the likelihood function is intractable or incomplete or missing data
are present. The formal steps leading to the design of the SSEM algorithm are
presented next.

Let the likelihood function for the OD-pair inference of a single traveler t,
under multiple price settings, be expressed as∏

obs

P ((i, j)obs
t )|Θ) . (4)

The MLE, i.e., the estimate of the best-fit parameter vector Θ of the traveler
type distribution, is found using (4),

Θ̂MLE =
∏
t

∏
obs

P ((i, j)obs
t )|Θ) . (5)

Taking the logarithm in (5), the likelihood function is defined as

L(Θ)Θ̂MLE
= arg max

Θ
L(Θ) = arg max

Θ
log

∏
t

∏
obs

P ((i, j)obs
t )|Θ)

= arg max
∑
t

∑
obs

logP ((i, j)obs
t )|Θ) ,

(6)

where P ((i, j)obs
t |Θ) is the marginal density function found by summing over all

the latent variables wt ∀t. The true OD pair wt for traveler t is unknown and
treated as a hidden/latent variable. The set of the bike segments (i, j)obs

t , along
which the traveler was observed to bike, under each price setting, are termed
available data; the traveler’s unobserved OD is termed missing data. A new
likelihood function can now be defined by working with the joint distribution of
the observed bike segments and the unobserved or unknown OD pairs; this step
gives the log-likelihood function that allows one to obtain an MLE based only
on the available data,

L(Θ) = arg max
Θ

∑
t

∑
obs

logP ((i, j)obs
t , wt|Θ) . (7)

By using the multiplicative rule for conditional probability we marginalize the
observed bike segments in (7) over the eligible OD pairs to obtain
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L(Θ) =
∑
t

∑
obs

log
∑
wt∈Ω

P ((i, j)obs
t |wt,Θ)P (wt|Θ) , (8)

where the set of eligible OD pairs Ω is built for traveler t. Suppose the best
incumbent found so far for Θ is Θ(n), and one seeks to improve this incumbent.
Transforming (8) by simple manipulations, one obtains

L(Θ)− L(Θ(n)) =
∑
t

∑
obs

log
∑
wt∈Ω

P ((i, j)obs
t |wt,Θ)P (wt|Θ)− L(Θ(n))

=
∑
t

∑
obs

log
∑
wt∈Ω

[
P (wt|(i, j)obs

t ,Θ(n))P ((i, j)obs
t |wt,Θ)P (wt|Θ)

P (wt|(i, j)obs
t ,Θ(n))

]
−
∑
t

∑
obs

logP ((i, j)obs
t |Θ(n)) .

Since the log term in above expression is convex, by using the Jensen’s inequality
for log-concave functions, one can replace the logarithm of sums by the sum of
logarithms to obtain the inequality,

L(Θ)− L(Θ(n)) ≥
∑
t

∑
obs

∑
wt∈Ω

P (wt|(i, j)obs
t ,Θ(n)) ×

log

[
P ((i, j)obs

t |wt,Θ)P (wt|Θ)

P ((i, j)obs
t |Θ(n))P (wt|(i, j)obs

t ,Θ(n))

]
,

and hence,

L(Θ)− L(Θ(n)) ≥
∑
t

∑
obs

∑
wt∈Ω

P (wt|(i, j)obs
t ,Θ(n)) ×

log

[
P ((i, j)obs

t , wt|Θ)

P (wt, (i, j)obs
t |Θ(n))

]
, (9)

where P ((i, j)obs
t , wt|Θ) and P (wt, (i, j)

obs
t |Θ(n)) are the joint probability distri-

butions under Θ and Θ(n), respectively. Denoting the right-hand side of the
above expression by B(Θ,Θ(n)),

B(Θ,Θ(n)) ≡
∑
t

∑
obs

∑
wt∈Ω

P (wt|(i, j)obs
t ,Θ(n)) ×

log

[
P ((i, j)obs

t , wt|Θ)

P (wt, (i, j)obs
t |Θ(n))

]
, (10)

and using (10), the inequality in (9) becomes

L(Θ) ≥ B(Θ,Θ(n)) + L(Θ(n)) .

If Θ = Θ(n), then log
[

P ((i,j)obst ,wt|Θ)

P (wt,(i,j)obst |Θ(n))

]
= 0 =⇒ L(Θ) = L(Θ(n)). By

maximizing the lower bound B(Θ,Θ(n)) over all possible values of Θ, one
guarantees that at Θ(t+1) a higher value of the likelihood is achieved, L(Θ(n+1)) ≥
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L(Θ(n)). Since P (wt, (i, j)
obs
t |Θ(n)) is not a function of Θ, it is convenient to

express this lower bound (10) as

B(Θ,Θ(n)) =
∑
t

∑
obs

∑
wt∈Ω

P (wt|(i, j)obs
t ,Θ(n)) × logP ((i, j)obs

t , wt|Θ)

=
∑
t

∑
obs

∑
wt∈Ω

P (wt|(i, j)obs
t ,Θ(n)) × log[P ((i, j)obs

t |wt,Θ)P (wt|Θ)] ,
(11)

where B(Θ,Θ(n)) ⇐⇒ Ew|(i,j),Θ(n) [logP ((i, j)obs
t , wt|Θ)], i.e., the expected

complete log-likelihood with respect to the probability distribution function
P (wt|(i, j)obs

t ,Θ(n)) in (2). The likelihood of an eligible OD pair for a traveler,
across all the observations available for this traveler, is independent of the
traveler type Θ and only depends on the bike segment along which trips were
made. This implies that wt is independent of Θ and it suffices to say that
P (wt|Θ) ⇐⇒ P (wt) for a certain observation of traveler t under the current
traveler type. Equivalently, one can re-write (10) as

B(Θ,Θ(n)) =
∑
t

∑
obs

∑
wt∈Ω

P (wt|(i, j)obs
t ,Θ(n)) ×

log[P ((i, j)obs
t |wt,Θ)P (wt)] .

(12)

Gradient ascent-based methods (e.g., the Newton-Raphson algorithm) per-
form continuous optimization iteratively, using an approximation of the objective
function to determine how to move to an improved solution at each iteration.
These methods, however, generally suffer from the quality of the employed
approximations and the difficulty in determining the appropriate step size (i.e.,
in finding how far to move along an identified improving direction). The EM
algorithm computes a local approximation of the likelihood function (at a given,
current best solution) as a lower bound to the objective function, and at ev-
ery iteration, re-evaluates this lower bound (see, e.g., (Minka, 1998)). Per the
Jensen’s inequality, the algorithm will find an improving move as long as the
gradient at a current solution is not zero; in practice, algorithm stopping criteria
typically prescribe to stop it when the gradient gets “small enough.”

Once the lower bound in computed during the E-Step of the SSEM algorithm,
one can restrict the set of travelers types to be searched over by the M-Step of
the algorithm, for each traveler in the population. This rule-based approach is
developed to capture the semantics of the true travel population and tie this
information to the traditional EM algorithm. This is achieved by generating a
set of traveler types for which the logit probability for the observed bike segment
is greater than that for any alternative path for any eligible OD w ∈ Ω, under a
given scenario. The finalized traveler type set is then obtained as the intersection
of such sets obtained for all the scenarios. These sets are then fed to the E-Step
while evaluating the lower bound B(Θ,Θ(n)).

More specifically, let M t(p) be the traveler type set for traveler t under sce-
nario p. Then M t(p) = {µ : P (i, j)µ > P (alt)µ}, where P (i, j)µ and P (alt)µ are
the logit probabilities for the observed bike segment and the alternative bike seg-
ment under a traveler type µ ∈M . The intersection across the different scenarios
gives the traveler type set for traveler t, M t = Mt(p1)∩Mt(p2)∩ ...Mt(p|P |) .
The resulting effect of this is that instead of summing P ((i, j)obs

t |wt, µ)× PΘ(µ)
over all traveler types, it is summed across only those traveler types that are
contained in the traveler type set of traveler t.
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We now outline the full procedure of the SSEM algorithm for true OD-pair
inference. At each iteration of SSEM, a lower bound is found by calculating the
expected value of the log-likelihood function. This expected value is conditioned
on the distribution over the unknown OD-pairs, given the information about the
bike segments under the current estimate of the traveler type probabilities. A
selective set of traveler types is also used, while evaluating this expected value:
this step is called the expectation step (E-Step). In the maximization step (M-
Step) we find such an estimate for the traveler type probabilities that maximizes
our lower bound. These E-Steps and M-Steps are performed iteratively, for
the entire traveler population, to find the best-fit estimate of the traveler type
distribution in the population and infer each traveler’s most likely OD-pair. See
Algorithm 1 steps, summarizing the SSEM procedure.

3.1 Inferring traveler type distribution via constrained
non-Linear optimization

In the maximization step of the SSEM algorithm, a constrained nonlinear
optimization problem is solved. This section details the solution approach to
this problem. The unknown model parameters for the traveler type distribution
are just the probability values for each traveler type: these values must be real
numbers between zero and one that sum up to one. The decision variables in
the formulation are the unknown probability values of the discrete traveler type
distribution. The constrained nonlinear formulation maximizes the lower bound
B(Θ,Θ(n)) computed in the E-Step using the partial observed data and the
reconstruction of the hidden OD-pair structure for the travelers under the current
estimate of the unknown distribution. The formulation for the maximization
step is given by model (P )

max
∑
t

∑
obs

∑
wt∈Ω

C log[xobs
1 Θ1 + xobs

2 Θ2 + ...+ xobs
9 Θ9]

(P) s.t.
∑

Θi = 1 , i = 1, 2, ..., 9 , (P1)

0 ≤ Θi ≤ 1 , i = 1, 2, ..., 9 . (P2)

In (P), constant C stands for the probability P (wt|(i, j)obs
t ) and xobs

i , i =
1, 2, ..., 9, is the product of the logit and prior probabilities P ((i, j)obs

t |wt, µ) ×
P (wt). Since the traveler type space is discrete, the values Θi, i = 1, 2, ..., 9, are
the probability (mass) values of the distribution PΘ(µ). Problem (P) can be
solved, e.g., using the fmincon function in Matlab which implements an interior
point method. The summation across Θi values in constraint (P1) represents the
normalization probability axiom. The second constraint ensures that each Θi is
non-negative to follow the non-negativity axiom from the law of probabilities.
At every iteration at the maximization stage, (P) is formulated and solved until
convergence to the input traveler type distribution.

The time complexity of an E-Step is O(NMKR), where N is the number
of travelers, M is the number of scenarios/price settings and K and R are the
number of OD pairs in the eligible OD set and the number of route alternatives for
each OD pair w, respectively. If the counts of alternatives and eligible OD pairs
are restricted, the complexity is O(NM). The complexity of the M-Step, and
hence, of the whole SSEM algorithm is also O(NM). To improve the runtime
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Algorithm 1 SSEM algorithm for MLE estimator

1: function E STEP(µ , Θ(n)) . The expectation step
2: Inputs:
3: µ← µ ,∀ µ ∈M
4: Θ(n) ← PΘ(µ) ,∀ µ ∈M
5: for t ∈ T do
6: for obs ∈ obs do
7: Initialize:
8: P (w)← 1/|Ωt| ,∀ w ∈ Ωt

9: Plogit(w|µ)obs
t ← 0 ,∀ w ∈ Ωt,∀µ ∈M

10: Bobs
t (w)← 0 ,∀ w ∈ Ωt

11: for w ∈ Ωt do
12: Plogit(w|µ)obs

t ← $r exp(−dr(p))
|Ω| ,∀µ ∈M ,∀r ∈ R(w)

13: Zµ ←
∑

r∈R(w)

Plogit(w|µ)obs
t ,∀µ ∈M

14: for r ∈ R(w) do

15: Plogit(w|µ)obs
t ← Plogit(w|µ)obst

Z

16: for w ∈ Ωt do
17: Bobs

t (w)← P (w) ∗
∑
µ∈M

Plogit(w|µ)obs
t

18: Z ′ ←
∑

w∈Ωt

Bobs
t (w)

19: for w ∈ Ωt do

20: Bobs
t (w)← Bobs

t (w)
Z′

21: return Bobs
t (w) ∀ obs ∈ obs, ∀ t ∈ T ∀w ∈ Ωt

22: function M STEP(Bobs
t , M t) . The maximization step

23: Inputs:
24: Bobs

t (w) ,∀ obs ∈ obs, , ∀ t ∈ T ,∀w ∈ Ωt

25: Initialize:
26: Q(Θ,Θ(n))← 0
27: Lobs

t (w) ∀ obs ∈ obs, ∀t ∈ T , ∀w ∈ Ωt

28: for t ∈ t do
29: for obs ∈ obs do
30: Lobs

t (w)← log[
∑

µ∈Ωp

P ((i, j)obs
t |w, µ)PΘ(µ)P (w)]

31: Initialize:
32: B

obs←
[
[...,Bobs

1 [w],...],[...,Bobs
1 [w],...],...,[...,Bobs

t [w],...]
]
∀obs∈obs

33: Lobs ←
[
[..., Lobs

1 [w], ...], [..., Lobs
1 [w], ...], ..., [..., Lobs

t [w], ...]
]
∀obs ∈ obs

34: Q(Θ,Θ(n))←
∑

obs∈obs

(Bobs)
T × Lobs

35: Θ(n+1) ← arg max
Θ

Q(Θ,Θ(n))

36: return Θ(n+1)
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37: procedure SSEM( ) . Main function implementing the SSEM algorithm
38: Inputs:
39: M t ∀t ∈ T
40: Initialize:
41: n← 0
42: Θ0 ← rand

(
PΘ(µ)

)
∀M

43: repeat
44: E STEP(µ , Θ(n))
45: M STEP(Bobs

t , M t) ∀obs ∈ obs, ∀t ∈ T
46: n← n+ 1
47: until Convergence

performance, a parallel implementation of both E-Step and M-Step can be
developed, exploiting multiprocessing. If the presented estimation methodology is
used with the real-world, large scale multimodal network data, then a distributed
computing approach should be considered for efficient scalability to accommodate
the quartic nature of the expectation step, which takes most time. The Appendix
section provides a parallelized version of the SSEM algorithm.

The output of SSEM is a traveler type distribution which is then used to infer
the true OD-pairs, using the Bayesian Inference approach discussed in Section 2;
it provides the most likely estimates for the true OD pairs, which is discussed in
greater detail in the next section.

3.2 Inference approach for true OD-pairs

This subsection presents the final step of the inference algorithm, which infers the
true traveler origin-destination pairs with certain belief/probability by utilizing
the knowledge of the learned traveler type distribution.

The distribution of traveler types estimated by the SSEM algorithm is
characteristic of the entire traveler population. In order to infer the OD pairs for
all the individual travelers, one needs to assign to them such traveler types whose
probability values are most probable and are in compliance with the inferred
distribution. This can be done by observing what routing choices each traveler
made across the different price settings and choosing the traveler types that
support those choices. The selective set of the traveler types generated per the
the approach explained in the previous section can be used here. Under any
given scenario, one can compute the probability of selecting an eligible OD from
the OD set Ωt as

P (w|Θ, (i, j)obs
t ) =

P (w)
∑
µ∈Mt

P ((i, j)obs
t |µ,w)PΘ(µ)∑

w∈Ωt
P (w)

∑
µ∈Mt

P ((i, j)obs
t |µ,w)PΘ(µ)

. (13)

This probability value for each eligible OD w ∈ Ωt must be computed for
the different price settings (scenarios). Then, the most likely OD-pair for this
individual (t) is identified as

w∗t = arg max
wt∈Ωt

∏
obs

P (wt|Θ, (i, j)obs
t ) . (14)
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4 Testing & Evaluation: Test bed specification

To test and validate the estimation model, two data sets are used. Simulated
data sets are used for evaluating the performance of the proposed estimation
framework. In this section, we first discuss the simulation environment developed
for the case studies along with presenting the model characteristics and assump-
tions made in creating the simulation environment to generate the synthetic
data for estimation purpose.

An agent based simulation (ABS) modeling approach is used to generate the
synthetic data. ABS is a flexible method for analyzing uncertainties in complex
networks, and in particular, modeling individual traveler’s behavior. The two
major components of this ABS model are (1) the construction of a data set
of travelers/agents with known trip (OD) demand, and (2) the simulation of
the travelers’ routing over the multi-modal network. The ABS model generates
travelers based on demand points and fixes their traveler types according to a
pre-set distribution. We capture the information of the bike segments the agents
travel on, which are fed into the inference algorithm for estimating the assumed
distribution while creating the ABS model.

The simulation framework for generating travelers, assigning a traveler type
and capturing the observed bike segment is outlined in Figure 4. The ABS
model requires the creation of a multimodal network spanning such modes as
bike, bus, metro and walking. The multi-modal network can be represented by

Multi-Modal Network Simulation

OD demand
for Travelers

Inputs

Traveler TypeRoute Choice Set

Price Setting

Choose Minimum
Disutility Route

Observe Bike
Segments

Price
Update

Figure 4: Framework for Agent Based Simualtion Model

Figure 5. The schematic representation shows the multimodal travel pattern of
an individual agent in the network. The hexagonal symbols denote the origin
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Figure 5: Multi-Modal Network for ABS framework

and destination of a traveler and is obtained from know demand data. The
public transportation modes bus, metro and the shared mobility bike sharing
system are all connected to the walking layer. A traveler can only enter and
egress a mode (or switch between modes) by transitioning through the walking
layer. The next step requires the creation of a distribution for assigning the
traveler types to travelers. The traveler types are sorted in the increasing order
of their price/time ratio and the traveler type with the lowest price/time ratio is
assigned the maximum probability. We thus use an exponential distribution to
assign the travelers, a traveler type. Once the multimodal-network is created, the
price settings for the links between the walking layer and bike network transition
are varied across scenarios in the Generate Scenario stage. After the scenario
creation, the simulation model utilizes the data and distributes the demand
over the network in the trip generation phase. Price settings, and traveler types
assigned to each traveler are also provided as an input to the model. For each
agent, a route choice set needs to be provided. There can be different strategies
implemented here. Choice set generation algorithms discussed in the literature
as mentioned in Section 2.4 can be used for generating routing alternatives for
the agents. Another way is to compute the shortest path in each and every
scenario for the OD assigned from the demand data and consider the set of
unique paths across all scenarios as the choice set. However for simplicity and
computational tractability, the choice set is generated by choosing the shortest
path under the base case and an alternative meaningful route.

In the multimodal network, travelers’ true origin and destination nodes
need to be identified. Note that the origin-destination nodes connected to the
multimodal network by the demand points are not the true OD pairs with respect
to the bike sharing system. In fact, these locations cannot be learned and the
inference algorithm can only infer true OD pairs around bike stations. So a true
origin-destination node that the SSEM algorithm can successfully infer can be
either a node on the walking layer, a bus station or a metro station. The inference
of such nodes can aid an analyst in modeling external demand entering into
the multimodal system. The route alternatives need to be generated based on
these true OD pairs. Once the route alternatives are generated, an agent makes
his/her routing decision my minimizing the disutility function. That is, every
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agent solves the problem of choosing an optimal route r ∈ R(w) represented by

min
r∈R(w)

Cr(µ, p) .

The subsequent subsections focus on implementing the ABS framework on two
test cases.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

Figure 6: Weighted network representation for Case Study 1

4.1 Case Study 1

We first present a test example of doing inference on a small network with only
two modes of transportation: a walking layer and a shared mobility system,
i.e., a bike sharing system. The network shown in Figure 6 is composed of 40
nodes and 134 links in the walking layer and with 6 nodes as bike hubs/stations
with 30 links as bike segments. All the links of the graph are weighted; travel
time on walking and biking layer and entry/exit cost on the transition links
between walking and biking. The network is a directed graph with no loops.
Each of the bike hubs/stations represented by red nodes on the biking layer
are connected to a corresponding node on the walking layer by two directed
links; transitioning from walking to biking and vice-versa. The total number of
travelers uploaded on this network are twenty. All 20 travelers are assumed to
use the bike sharing system, with no traveler having the same origin-destination
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pair. Once the demand of 20 travelers is uploaded on the network, the traveler
types are assigned to these 20 travelers using a distribution as shown in Figure
7. If all classes of travelers are considered, the overall distribution will be a

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

0

0.1

0.2

P
ro

b
a
b
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it

y

traveler type distribution

Figure 7: traveler type distribution.
traveler types ordered in increasing order of price/time ratio (sensitivity).

normal distribution with travelers having traveler types different than these nine
values. The nine traveler types are assumed to be at the end or tail of the normal
distribution. In the shown distribution, µ1 has the highest probability since it is
the least price sensitive and µ9 has the lowest probability since it has the highest
price sensitivity. Based on the count of the travelers using a specific traveler
type, a new distribution is created which is the Traveler type distribution to be
inferred using the estimation framework.

Figure 8: Multi-modal Network for Lower Manhattan, New York
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Figure 9: Zoomed snippet of the Multi-modal network for Manhattan

4.2 Case Study 2

In this section, the estimation model is implemented on a representative network
of the Citi bike sharing system which includes a portion of Manhattan, New
York. Figure 8 depicts the multimodal network for a portion of lower Manhattan,
New York. The network has been modeled using real time schedules for the
transit modes. The tool used to model the multimodal network is Q-GIS a
Geographical Information System software. As per ESRI, 1995 GIS is a tool
that organizes geographic data using a software platform for data management
and integrates it with computer hardware to effectively display the different
geographic features along with analyzing or manipulating the geospatial data.
Q-GIS is a an open source version which is used to achieve these functionality.
The data sets used for creating the multimodal network’s walking layer have
been acquired from the ‘New York City, Department of City Planning’. The bike
stations/hubs location coordinates have been identified by using the information
available on Citi Bike’s online maps. Geo reference data for constructing the
networks for bus and metro modes have been obtained from the Metropolitan
Transportation Authority (MTA). The link costs for the public modes; bus and
metro are modeled using the transit schedules available by MTA. For the links
between bike stations on the biking layer, we assume that the travelers bike on
the roads with a few exceptions like freeways and underpasses; so the network
for bike sharing system is similar to the walking layer factored by the speed of
biking. To model transfers between different transit lines for bus and metro and
waiting at the stations, headway calculated from the transit schedules are used.
One major assumption made while creating the networks is that no congestion
is taken into consideration for any mode, which can have a major effect on the
travel disutility function. The period of study for this case is the peak morning
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period from 9:00 am to 10:00 am. This particular time frame is selected as there
will be maximum load on the multimodal transit system during this period. In
the zoomed snippet shown in 9, the green dots represent the nodes of the walking
layer, the orange pentagons represent the metro stations, the blue triangles
represent the bike stations/hubs and the red stars represent the bus stations.
Demand data acquired from ‘New York City, Department of City Planning’is
then uploaded onto the network, after the network creation stage. The traffic
flow from the demand points not included in the study area are considered as
external travelers being born at the nearest metro or bus stations. Similarly for
travelers flowing out of the study area, are considered to be leaving the study
area through bus or metro stations located at the periphery of the network.
The total number of travelers after uploading the demand is 45,860. Using a
similar traveler type distribution, traveler types are assigned to the travelers and
a 100 scenarios are generated. Those travelers that do not use the bike sharing
system under any of the price settings are filtered out to make the problem
more computationally tractable. The total number of travelers that actually
end up using the bike sharing system are 2,852 which is around 6% of the travel
population and is a reasonable number of agents for implementing the estimation
model. Due to computational challenge of handling a large population along with
their respective inputs, we test the estimation framework only on 100 travelers.
In the next section we present the estimation results for the illustrative example
and the case study discussed in the current section.

5 Results and Discussion

In order to test the inference methodology, numerical studies were carried out
over two sets of testing data described in the previous section. The first test set
consists of a small network topology whereas the second is a network topology
representing a part of Manhattan, New York City as described in Section 4.2.
The simulation study period was chosen as the peak AM period from 9:00 AM to
10:00 AM, to have maximum traveler density in the test network. The inference
algorithm is applied to both these networks and the inferred distributions are as
shown in Figures 10 and 11.

Note that the inferred distribution overstates the probability values for
certain traveler types and understates the values for others. More specifically,
the estimation method is able to provide good estimates of the traveler types
for the travelers that are fairly sensitive to pricing (see traveler types 7, 8 and
9) and for the travelers that are more time sensitive (see vectors 1, 2 and 3).
However, the travelers whose traveler types are sensitive to both pricing and
time are hard to distinguish. This issue can be resolved with an addition of more
scenarios, as will be seen in case study 2.

Once the traveler type distribution is inferred, the true OD pairs for each
traveler are deduced using the methodology presented in section 3.4. Table 2
provides the details of the estimated OD pairs on the illustrated example. If the
traveler’s Origin-Destination locations are found correctly it is represented by
an indicator value of 1 else 0. The estimation framework fails to identify the
true OD pair only in 5 cases. The closeness of the wrongly estimated origins and
destinations can be computed to measure the true error in the estimation method.
A closeness rank for origins and destinations around the wrongly estimated OD
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Figure 10: PDFs for Traveler Input and Learned distribution using Selective Set
EM algorithm for MLE on small network topology
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Figure 11: Learned distribution using Selective Search EM algorithm for MLE
on network topology representing Manhattan, New York

pairs are computed. The eligible origins around the true origin and eligible
destinations around the true destination node are ranked based on the closeness
of the nodes to the true origin and destination nodes. From Table 2 it can be seen
that for OD pair 30-16, the origin assigned as the true origin is the closest node
whereas the destination assigned as the true destination is the second closest
node from the set of eligible origins and destination points. The percentage
of OD pairs correctly inferred for the small network is around 75 %, whereas
for the larger network it is around 78.57 %. For the larger network we report
the OD estimation results in terms of aggregate travel demand inferred from
the inference algorithm and compare it with the true travel demands. Table 3
shows the true counts and inferred counts for each OD pair along which multiple
individuals travel. The percentage of OD pairs correctly inferred is around 76.47
%.

We next present the sensitivity analysis for the SSEM inference algorithm

26



Table 2: Inferred OD pairs for each traveler.
Column1: Traveler ID, Column2: True Traveler OD from demand data, Column3: Traveler OD pair

inferred using EM algorithm, Column4: Variable with value 1 if true and inferred OD are same else 0,

Column5: Rank of the origin in the inferred OD in terms of distance from the true origin, Column6:

Rank of the destination in the inferred OD in terms of distance from true destination.

Traveler
ID

True
OD

Inferred
OD

Inference
Indicator

Closeness Rank
for Origin

Closeness Rank
for Destination

T1 1-30 1-30 1 - -
T2 36-5 36-5 1 - -
T3 38-3 38-3 1 - -
T4 30-16 24-8 0 1 ‖ 4 2 ‖ 4
T5 38-3 40-13 0 1 ‖ 3 2 ‖ 3
T6 8-24 8-24 1 - -
T7 15-27 15-27 1 - -
T8 16-35 16-35 1 - -
T9 1-40 1-40 1 - -
T10 13-37 13-37 1 - -
T11 5-37 5-37 1 - -
T12 1-15 1-15 0 1 ‖ 2 1 ‖ 2
T13 16-29 8-30 1 - -
T14 15-32 15-32 1 - -
T15 30-13 30-13 1 - -
T16 2-32 19-32 0 3 ‖ 4 -
T17 22-5 36-13 0 1 ‖ 2 2 ‖ 5
T18 39-18 39-18 1 - -
T19 10-21 10-21 1 - -
T20 31-15 31-15 1 - -

to the number of scenarios. Figure 12 shows the performance of the SSEM
algorithm in terms of Mean Squared Error (MSE) for the inferred distribution
and the percentage of OD-pairs correctly inferred across different number of
scenarios. The sensitivity analysis is performed for both the test cases. It can
be seen from Figure 12 that the MSE for the inferred distributions goes on
decreasing as the number of scenarios increases, whereas the percentage of the
correctly estimated OD-pairs goes on increasing as the number of scenarios
increases. As a result, the SSEM algorithm is able to learn more about the
traveler’s preferences and true OD-pairs as the size of the data increases on
increasing the number of scenarios.
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Table 3: Aggregate travel demand inferred using the estimation framework

OD
Pair

True
Count

Inferred
Count

OD
Pair

True
count

Inferred
Count

OD
Pair

True
count

Inferred
Count

35-66 2 2 66-243 5 2 251-51 1 1
35-51 2 2 51-42 1 0 14-66 2 1
61-66 1 1 689-66 1 0 23-273 1 1
99-51 1 1 40-40 1 1 92-273 1 1
40-69 1 1 582-98 1 1 251-273 1 1
655-14 2 1 722-66 5 5 92-51 2 2
117-1 1 0 720-66 2 2 23-388 1 1

298-202 1 1 127-217 1 1 66-40 2 2
66-308 3 2 722-217 6 6 23-122 1 1
66-14 3 2 244-243 1 1 23-112 1 1
66-19 1 1 127-66 2 2 99-99 1 1

582-306 1 1 720-69 1 1 66-547 1 1
309-314 1 1 722-319 1 1 66-127 1 1
190-298 1 1 51-251 1 1 66-720 1 1
202-112 1 1 720-217 1 1 217-720 1 1
66-57 1 1 720-319 1 1 66-35 1 1

217-127 1 0 40-273 1 1 66-722 1 1
66-684 1 1 40-582 1 1 558-112 1 1
14-217 1 0 200-51 1 1 558-69 2 0
23-582 2 1 40-66 4 1 558-388 1 1
251-582 1 1 40-51 1 1 12-112 1 1
14-69 1 0 51-243 1 1 1-112 1 1

Figure 12: Sensitivity of estimation framework to the number of scenarios
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6 Conclusion and Future Research Directions

This paper presents a framework to acquire the knowledge about dissagregate
traveler’s OD pairs and their preferences by observing traveler responses to the
pricing incentives. To this end, traveler type distribution is assumed to capture
the heterogeneity of the travelers. The presented Selective Set Expectation
Maximization (SEEM) algorithm gradually updates the beliefs about the trav-
elers’ OD location distribution; a system manager can exploit these results to
introduce a new pricing scenario, with each such added scenario increasing the
accuracy of OD pair inference. With the travel patterns changing over short
time periods, the manager can react to these changes as they occur, offering
pop-up incentives in addition to regular ones. With the flexibility in operations,
bike sharing systems are an ideal test bed for the developed method, which can
supply OD pair inference algorithms with rich data, resulting from perturbing
price settings over various bike segments. The SSEM algorithm can also be
used with real time transit data to learn travel population’s taste variation and
also for travel OD-estimation in real time. The SSEM algorithm can also be
boosted to increase the accuracy of inference results for data sets with multiple
observations by screening out infeasible choices in cases of similar estimation
problems.

The methodology adopted in this paper can be extended as a future course
of research with other modes of transportation, such as perturbations can arise
as a result of road lane closures, as well as public events or extreme weather
conditions. Further research interests can be invoked in the areas of eligible
OD set generation and parameter estimation for pricing. Travelers value pricing
differently similar to the way they value in-vehicle travel time or waiting time
differently. The dissagregate travel OD estimation model developed in this paper
can provide useful information for system operations, planning, incentives/toll
policies, management, etc. In bike-sharing system, such an integrated solution
for the shared vehicle re-balancing problem could alternate between optimizing
pricing incentives based on the currently estimated parameters for the trip
demand and traveler preferences, and updating those parameter values based
on the additional data gathered after the system adjusts itself to a new pricing
policy. This process can be thought of as a repeated probing of the system to
better estimate its parameter values, which can then be effectively optimized.
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7 Appendix

This section provides a parallel implementation for the Selective Set Expectation
Maximization algorithm discussed in section 3. Multiprocessing or parallel pro-
cessing on multiple cores is used to achieve higher scalability for the Expectation
Step (E-Step) of the SSEM algorithm. A mapper and reducer functions are
used to create a list of values with the traveler’s id as the key for the list. For
each value in the list (which has a unique traveler id); the 〈key − value〉 pair is
sent to the parallelized functions E STEP() and LIKELIHOOD() to perform the
expectation step of SSEM and compute the lower bound for maximization. As
discussed in Section 3.2, the time complexity of E-Step is quartic in nature and
a faster execution can be achieved using multiple cores on a high performance
computing platform. For even higher scalability, this parallelized version of
SSEM can be implemented on a distributed framework with multiple nodes each
having multiple cores for processing.

Algorithm 2 Parallel Implementation of SSEM algorithm for MLE estimator

1: function Map(t) . Mapper for creating Traveler-Scenario Keys
2: for obs ∈ obs do
3: K ← t
4: V ← obs
5: emit(K,V )

6: function Reduce(K, list[V ]) . Reducer to Create Traveler-Scenario Pairs
7: for i ∈ 1...|list[V ]| do
8: K ← t
9: V ← list[i]

10: emit(K,V )

11: function E STEP(< t obs >, µ , Θ(n)) . The expectation step
12: Inputs:
13: µ← µ ∀µ ∈M
14: Θ(n) ← PΘ(µ) ∀µ ∈M
15: Initialize:
16: P (w)← 1/|Ωt| ∀ w ∈ Ωt

17: Plogit(w|µ)obs
t ← 0 ∀ w ∈ Ωt, ∀µ ∈M

18: Bobs
t (w)← 0 ∀ w ∈ Ωt

19: for w ∈ Ωt do
20: Plogit(w|µ)obs

t ← $r∗exp(−µ ∗ dr(p))
|Ω| ∀µ ∈M , ∀r ∈ R(w)

21: Zµ ←
∑

r∈R(w)

Plogit(w|µ)obs
t ∀µ ∈M

22: for r ∈ R(w) do

23: Plogit(w|µ)obs
t ← Plogit(w|µ)obst

Zµ

24: for w ∈ Ωt do
25: Bobs

t (w)← P (w) ∗
∑
µ∈M

Plogit(w|µ)obs
t

26: Z ′ ←
∑

w∈Ωt

Bobs
t (w)
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27: for w ∈ Ωt do

28: Bobs
t (w)← Bobs

t (w)
Z′

29: return Bobs
t (w) ∀w ∈ Ωt

30: function LIKELIHOOD(< t obs >, M t) . Objective Function Terms
31: Initialize:
32: Lobs

t (w)← log[
∑

µ∈Mt

P ((i, j)t)
obs|w, µ)PΘ(µ)P (w)]

33: return Lobs
t (w)

34: function M STEP(Bobs
t ) . The maximization step

35: Initialize:
36: Q(Θ,Θ(n))← 0
37: Bobs ←

[
[..., Bobs

1 [w], ...], [..., Bobs
1 [w], ...], ..., [..., Bobs

t [w], ...]
]
∀obs ∈ obs

38: Lobs ←
[
[..., Lobs

1 [w], ...], [..., Lobs
1 [w], ...], ..., [..., Lobs

t [w], ...]
]
∀obs ∈ obs

39: Q(Θ,Θ(n))←
∑

obs∈obs

(Bobs)
T × Lobs

40: Θ(n+1) ← arg max
Θ

Q(Θ,Θ(n))

41: return Θ(n+1)

42: procedure SSEM( ) . Main function implementing the SSEM algorithm
43: Inputs:
44: M t ∀t ∈ T
45: Initialize:
46: n← 0
47: Θ0 ← rand

(
PΘ(µ)

)
∀µ ∈M

48: TS ← list[ ]
49: for all processors do in parallel
50: MAP(t) t ∈ T
51: TS ← REDUCE()
52: repeat
53: for all processors do in parallel
54: E STEP(< t obs >) ∀ < t obs > ∈ TS[< t obs >]
55: LIKELIHOOD(< t obs >) ∀ < t obs > ∈ TS[< t obs >]
56: M STEP( )
57: t← n+ 1
58: until Convergence
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A statistical cyclic model. In European Conference on Complex Systems 2009.

Bovy, P. H. and S. Fiorenzo-Catalano (2007). Stochastic route choice set
generation: behavioral and probabilistic foundations. Transportmetrica 3 (3),
173–189.

Bovy, P. H. L. and S. Hoogendoorn-Lanser (2005). Modelling route choice
behavior in multi-modal transport networks. Transportation 32, 341–368.

Cascetta, E. and S. Nguyen (1988). A unified framework for estimating or
updating origin/destination matrices from traffic counts. Transportation
Research Part B: Methodological 22 (6), 437–455.

Castillo, E., J. M. Menéndez, and S. Sánchez-Cambronero (2008). Predict-
ing traffic flow using bayesian networks. Transportation Research Part B:
Methodological 42 (5), 482–509.

Chen, A., S. Ryu, and P. Chootinan (2010). l∞-norm path flow estimator for
handling traffic count inconsistencies: Formulation and solution algorithm.
Journal of transportation engineering 136 (6), 565–575.

de la Barra, T., B. Perez, and J. Anez (1993). Multidimensional path search
and assignment. In PTRC Summer Annual Meeting, 21st, 1993, University
of Manchester, United Kingdom.

de Moraes Ramos, G., W. Daamen, and S. Hoogendoorn (2011). Expected
utility theory, prospect theory, and regret theory compared for prediction
of route choice behavior. Transportation Research Record: Journal of the
Transportation Research Board 2230.1 , 19–28.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal statistical
society. Series B (methodological), 1–38.

Frejinger, E. and M. Bierlaire (2007). Random sampling of alternatives for
route choice modeling. In Swiss Transport Research Conference, Number
TRANSP-OR-TALK-2007-013.
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