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Abstract

We study an equivalent optimization problem with an inequality constraint and
boundary conditions, whose necessary condition for the optimality is the varia-
tional inequality presentation of American options. To solve the problem, we use
the gradient projection method, with discretizations both in time and space. We
tested the algorithm and compared with the projective successive over-relaxation
method.
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1 Introduction

An American option has a key feature that distinguishes it from a European
option: exercise is permitted at any time during its life of the option. So, unlike
a European option, we have to determine whether or not an American option
should be exercised at each instant of time. Moreover, the valuation of an
American option is a free boundary problem, which occurs in many engineering
systems. This property was first pointed out by McKean [18].
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The valuation of American options with dividends has been studied by many
scholars. Geske [10], Roll [20], and Whaley [21] obtained analytical solutions
for the case of known discrete dividends, while Brennan and Schwartz [1]
and Brennan and Schwartz [2] introduced the finite difference approximation
approach with log-transformation. This numerical method approximates dif-
ferential terms of the value function by discretizing both time and state space.
The finite difference method is one of the most popular methods because it
is flexible and easy to implement, so that non-standard forms of options also
may be solved. Cox et al. [6] introduced the binomial method for the valuation
of American options, which is also flexible and requires time discretizations.
Geske and Shastri [12] summarized and compared these early methods.

Later, Geske and Johnson [11] presented an analytic solution to American put
option with or without dividends. However, their formula is an infinite series
that must be approximated by numerical methods. Kim [17] and Carr et al.
[4] provided an integral representation of the option price. These methods are
compared by Broadie and Detemple [3], who also derived the lower bound and
upper bound for the value of American options.

More recent studies on American option pricing are based on linear com-
plementarity problems (LCPs). Huang and Pang [14] provided discretized
LCP formulations for various option problems including American options and
suggested solution algorithms including projective successive over-relaxation
(PSOR), Lemke’s algorithm and a revised parametric principal pivoting (PPP)
algorithm. Forsyth and Vetzal [9] considered a special penalty method for
LCPs adequate to handle American option constraints, while Coleman et al.
[5] proposed a Newton type method for a nonlinear programming problem
based on quadratic penalization of the complementarity conditions. Ikonen
and Toivanen [15] showed LU decomposition can improve the performance of
several different algorithms for solving LCPs of American options.

Moreover, Dempster and Hutton [7] studied American option pricing problem
using linear programming approach and Jaillet et al. [16] presented variational
inequality formulation of American option pricing problem. In this paper, we
will construct an extremal problem equivalent to the variational inequality for-
mulation and discuss the gradient projection method for the extremal problem.

2 Linear Complementarity Problem Formulation of the American

Options

It is well-known that an American put option pricing problem can be formu-
lated as a linear complementarity problem: see Wilmott et al. [22] and Huang
and Pang [14]. When we denote P (s, t) the value of an American put option,
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we have a linear complementarity problem (LCP ):

LBS(P (S, t)) · [P (S, t)− Φ(S)] = 0 (1)

P (S, t)− Φ(S) ≥ 0 (2)

−LBS(P (S, t)) ≥ 0 (3)

with boundary conditions

P (S, t) ≥ Φ(S)

P (S, T ) = Φ(S)

P (0, t) = E

lim
S→∞

P (S, t) = 0

where LBS denote the Black-Scholes operator

LBS ≡
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r − δ)S

∂

∂S
− r

the pay-off function Φ(S) is defined by

Φ(S) ≡ max(E − S, 0)

Further, r is the interest rate, δ is the constant continuous dividend rate, σ
is the volatility, S is the asset price, E is the strike price and T is the expiry
date.

For American call options, similar LCP formulation is possible. Let C (S, t)
denote the value of an American call, then the LCP formulation is:

LBS(C(S, t)) · [C(S, t)− Φ(S)] = 0

C(S, t)− Φ(S) ≥ 0

−LBS(C(S, t)) ≥ 0

with boundary conditions

C (S, t) ≥ Φ(S)

C (S, T ) = Φ(S)

C (0, t) = 0

lim
S→∞

C (S, t) → ∞

and in this case we have the pay-off function

Φ(S) ≡ max(S − E, 0)
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3 Variational Inequality Formulation

In this section, we will formulate an American put option in a variational in-
equality problem. As an alternative approch to study mathematical program-
ming problems, variational inequalities have been studied in various economic
equilibrium problems. See Harker and Pang [13] and Facchinei and Pang [8]
for general references of variational inequality problems and applications. In
particular, Jaillet et al. [16] studied American option pricing problems in vari-
ational inequality form.

We define variational inequality problem as following:

Definition 1 Given a nonempty set, Ω, and a function, F : Ω → R
n, the

variational inequality problem V IP (F,Ω) is to find a vector y such that

y ∈ Ω

〈F (y), x− y〉 ≥ 0 ∀x ∈ Ω

where 〈·, ·〉 denotes the corresponding inner product.

Let us define a set of functions

Ω = {G(S, t)|G(S, t)− Φ(S) ≥ 0 ∀S ∈ R+, t ∈ [0, T ]} ,

and pick U ∈ Ω so that

− LBS(P (S, t)) · [U(S, t)− Φ(S, t)] ≥ 0

∀S ∈ R+, t ∈ [0, T ]. (4)

We have also from (1)

−LBS(P (S, t)) · [P (S, t)− Φ(S)] = 0 (5)

Subtraction (5) from (4), we get

− LBS(P (S, t)) · [U(S, t)− P (S, t)] ≥ 0

∀S ∈ R+ ∀t ∈ [0, T ], (6)

or, equivalently,

∫

∞

0
−LBS(P (S, t)) · [U(S, t)− P (S, t)] dS ≥ 0

∀t ∈ [0, T ], (7)

which is a variational inequality formulation of an American put option. We
note that the Ω is a nonempty square-integrable space where the corresponding
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norm is defined by

〈u (S, t) , v (S, t)〉 ≡
∫

∞

0
[u (S, t) · v (S, t)] dS

for any given instant of time t ∈ [0, T ].

3.1 Log Transformation

Let us consider the following transformation:

y ≡ logS

τ ≡ T − t

u(y, τ) ≡ P (S, t),

Then (3) becomes

−
∂u

∂τ
+

1

2
σ2∂

2u

∂y2
+
(

r − δ −
1

2
σ2
)

∂u

∂y
− ru ≤ 0. (8)

Defining an operator

Ψ =
∂

∂τ
−

1

2
σ2 ∂2

∂y2
−
(

r − δ −
1

2
σ2
)

∂

∂y
+ r,

and the payoff function

φ(y) = max(E − ey, 0),

we obtain a linear complementarity problem and variational inequality prob-
lem for this case; it is to find u(y, τ) such that, for all v ∈ Ω

Ψ(u) [u− v] = 0,Ψ(u) ≥ 0, u− v ≥ 0

and the variational inequality problem is to find u ∈ Ω for each time instant
τ ∈ [0, T ] such that

∫

∞

−∞

Ψ(u) [v − u] dy ≥ 0 ∀v ∈ Ω, (9)

where

Ω = {v : v − φ ≥ 0, v(y, 0) = φ(y),

v(−∞, τ) = φ(−∞), v(∞, τ) = φ(∞)}. (10)

We denoted f(∞) = limx→∞ f(x).
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4 An Extremal Problem in Continuous Time

Now we are interested in the articulation and direct solution of a functional
mathematical program whose solutions are also solutions of (9). We show
through numerical examples that such an approach is numerically efficient.
Consider the extremal problem:

min J (u) =
∫

∞

−∞

∫ u

0
Ψ (v) dvdy s.t. u ∈ Ω (11)

where Ω is defined as (10). By deriving a necessary condition for this extremal
problem, we recover variational inequality (9), thereby verifying that any so-
lution of (11) is also a solution of (9). Therefore, any solution to (11), provided
one exists, is a solution to the linear complementarity problem.

We will need some results of functional analysis to derive the necessary con-
dition. First, we introduce the Gateaux-differentiability.

Definition 2 Let V be a Hilbert space. A functional J is Gateaux differen-
tiable or G-differentiable at v ∈ V in the direction ϕ ∈ V , if the limit

lim
θ→0

J(v + θϕ)− J(v)

θ

exists. This limit is denoted by δJ(v, ϕ).

The famous Riesz’s representation theorem leads to the introduction of the
gradient. If J is G-differentiable at v ∈ V , and if δJ(v, ϕ) is a continuous

linear form with respect to ϕ, then, there exists an element
∂J

∂v
∈ V such that

∀ϕ ∈ V : δJ(v, ϕ) =

〈

∂J

∂v
, ϕ

〉

.

Moreover,
∂J

∂v
is called the (Gateaux-) gradient of J at v. See Section 10.3.3

of [19] for further discussion.

The validity of the extremal problem (11) may now be established. To this
end, we must establish that the functional J (u) is G-differentiable and the set
Ω is convex. The relevant results are:

Lemma 1 The functional

J(u) =
∫

∞

−∞

∫ u

0
Ψ(v)dvdy
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is everywhere G-differentiable and

∂J(u)

∂u
= Ψ(u)

Proof. We construct the G-derivative as

δJ(u, ϕ) = lim
θ→0

J(u+ θϕ)− J(u)

θ

=
∫

∞

−∞

lim
θ→0

∫ u+θϕ
0 Ψ(v)dv −

∫ u
0 Ψ(v)dv

θ
dy

=
∫

∞

−∞

lim
θϕ→0

∫ u+θϕ
0 Ψ(v)dv −

∫ u
0 Ψ(v)dv

θϕ
ϕdy

=
∫

∞

−∞

Ψ(u)ϕdy

Since

δJ(u, ϕ)
.
=

〈

∂J

∂u
, ϕ

〉

.
=
∫

∞

−∞

∂J

∂u
ϕdy,

we have
∂J

∂u
= Ψ(u)

Lemma 2 The set Ω defined by (10) is convex.

Proof. Pick v̄, v̂ ∈ Ω so that

v̄ − φ ≥ 0, v̂ − φ ≥ 0

and define
vλ = λv̄ + (1− λ)v̂ λ ∈ [0, 1].

Then vλ ∈ Ω.

Finally, we obtain the following theorem:

Theorem 1 Any solution of the extremal problem (11) is a solution of the
variational inequality (9).

Proof. Let v ∈ Ω be arbitrary. Since Ω is convex, and u ∈ Ω implies

u+ θ(v − u) ∈ Ω ∀θ ∈ [0, 1].

Hence for u to be a minimum of J on Ω it is necessary that ∀v ∈ Ω

[

d

dθ
J(u+ θ(v − u))

]

θ=0

= δJ(u, v − u) ≥ 0.
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Since J is G-differentiable at u and δJ is well-defined by Lemma 1, we have

δJ(u, v − u) =
∫

∞

−∞

Ψ(u)(v − u)dy ≥ 0 ∀v ∈ Ω.

(9) follows immediately.

5 The Gradient Projection Algorithm

We study in this section the following projected gradient method:

Step 0. Initialization. Set k = 0. Pick u0 (y, τ) ∈ Ω.

Step 1. Determine gradient. Calculate

∂Jk

∂u
≡

∂J
(

uk
)

∂u
= Ψ(uk)

=

[

∂uk

∂τ
−

1

2
σ2∂

2uk

∂y2

−
(

r − δ −
1

2
σ2
)

∂uk

∂y
+ ruk

]

Step 3. Update iterate. Calculate

uk+1 = PΩ

{

uk − θk
∂Jk

∂u

}

= max

{

φ, uk − θk
∂Jk

∂u

}

where PΩ denotes the minimum norm projection onto Ω and θk is a variable
scalar step.

Step 4. Stopping test. If an appropriate stopping test is satisfied, halt exe-

cution and declare

u∗ (y, τ) ≈ uk+1 (y, τ)

Otherwise set k = k + 1 and go to Step 1.

For the convergence of this scheme and the detailed discussion, see the Chapter
10 in [19].
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6 Finite Difference Approximation

In this section, we are interested in a finite approximation of infinite dimen-
sional variational inequality problem (9). To recall

∫

∞

−∞

Ψ(u) [v − u] dy ≥ 0 ∀v ∈ Ω, ∀τ ∈ [0, T ] (12)

We limit the domain of space y by an interval [yL, yU ] instead of (−∞,∞) and
discretize the interval by M sub intervals so that

yi = yL + iδy, i = 0, ...,M

δy =
yU − yL

M

Also we discretize the time by L intervals so that

τj = jδτ, j = 0, ..., L

δτ =
T

L

Then (12) is approximated to

M
∑

i=0

Ψ(ui,j) [vi,j − ui,j] ≥ 0 ∀v ∈ Ω, ∀j ∈ {0, ..., L} (13)

where ui,j = u (yi, τj). By its nature, the finite difference approximation has
an instability property which depends on the mesh sizes, δy and δτ . When a fi-
nite difference approximation is unstable, the sequence of ui,j’s is unbounded,
hence the scheme fails to be convergent. This property is maily due to the
accumulation of rounding errors. For the stability of the finite difference ap-
proximation discussed in this paper, we need δτ/ (δy)2 bounded by a constant.
See Wilmott et al. [22] for a further discussion.

Note that, for j = 0, that is τ = 0, the VI (13) has the solution ui,0 = φi =
φ (yi) from the initial condition. Starting from this solution for j = 0, we may
solve (13) for the entire time domain step by step. Our next interest is, of
course, how to approximate the parabolic operator Ψ (·). We may consider
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following approximations

∂ui,j

∂τ
≈

ui,j − ui,j−1

δτ
∂ui,j

∂y
≈ θ

(

ui+1,j − ui−1,j

2δy

)

+ (1− θ)

(

ui+1,j−1 − ui−1,j−1

2δy

)

∂2ui,j

∂y2
≈ θ

(

ui+1,j − 2ui,j + ui−1,j

(δy)2

)

+ (1− θ)

(

ui+1,j−1 − 2ui,j−1 + ui−1,j−1

(δy)2

)

where we used θ-approximation for the derivatives with respect to the space
y. For θ = 0, 1

2
, 1, the approximation becomes explicit, Crank-Nicolson, and

implicit, respectively.

Ψ (ui,j; ui,j−1) ≈
ui,j − ui,j−1

δτ

−
1

2
σ2

[

θ

(

ui+1,j − 2ui,j + ui−1,j

(δy)2

)

+ (1− θ)

(

ui+1,j−1 − 2ui,j−1 + ui−1,j−1

(δy)2

)]

−
(

r − δ −
1

2
σ2
)

[

θ

(

ui+1,j − ui−1,j

2δy

)

+ (1− θ)

(

ui+1,j−1 − ui−1,j−1

2δy

)]

+ rui,j

where we denote Ψ (ui,j; ui,j−1) the approximation of the operator Ψ (·) at ui,j

given ui,j−1 for all i and j.

As discussed above, the algorithm will be of the form:

(1) For j = 0, have the solution of the VI (13), that is, ui,0 = φi = φ (yi). Set
j = 1.

(2) Given the solution ui,j−1, solve the following VI

M
∑

i=0

Ψ(ui,j; ui,j−1) [vi,j − ui,j] ≥ 0 ∀vi,j ∈ Ω (14)

(3) Set j = j + 1 and repeat Step 2 until j = L.

In this paper, the VIP (14) will be solved by the gradient projection method for
the equivalent extremal problem. The gradient projection method is widely
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used for optimization problems and we found it is easy to impelement, in
particular, for solving American option pricing problems when the method is
combined with finite difference approximations.

7 Numerical Results

We have tested the gradient projection algorithm with discretizations both
in time and space for several American call options. We used yL = −6.5 and
yU = 6.5 for space discretization. Broadie and Detemple [3] studied upper
and lower bounds for the values of American option, with which we compared
our result in Table 1. The binomial method with 15,000 steps ([3]) is used to
compare. To have accurate result, in the experiments represented in Table 1,
very small mesh sizes were used. Also, the convergence property of the gradient
projection algorithm was tested by experiments changing the mesh sizes. The
result provided in Table 2 indeed shows the scheme converges as the number
of meshes increases.

The performance of a popular method for the valuation of American options,
the projected successive over-relaxation (PSOR) (see [22]), is compared with
that of the gradient projection method. The computation result shown in
Table 3 says that the gradient projection method is a competitive method
in terms of accuracy and speed. Although a bigger step size in the gradient
projection algorithm allows us to achieve a solution faster, we should take a
smaller step size when the meshes are finer for the convergence. The over-
relaxation parameters in the PSOR method and the step sizes in the gradient
projection method are found by trial-and-error. For both methods, we stopped
when the relative error based on the norm,

∥

∥

∥uk+1 − uk
∥

∥

∥, is smaller than 10−5.
The computation times are averaged over 100 repeats.

The valuation of an American call option is presented graphically in Figures
1 and 2. All the computation in this paper was performed by Matlab 7.0 at
a generic desktop computer.

8 Conclusion

We have examined the gradient projection method for an equivalent extremal
problem of the American option valuation. To this end, we first studied the
linear complimentarity problem form for both American put and call op-
tions, and basic algebraic manipulations enabled us to have the variational
inequality formulations. We used some results of functional analysis such as
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Option Asset Lower Upper Binomial Gradient

Parameters Price Bound Bound Method Projection

r = 0.03 80.000 0.218 0.220 0.219 0.218

σ = 0.20 90.000 1.376 1.389 1.386 1.382

δ = 0.07 100.000 4.750 4.792 4.783 4.777

110.000 11.049 11.125 11.098 11.093

120.000 20.000 20.061 20.000 20.001

r = 0.03 80.000 2.676 2.691 2.689 2.678

σ = 0.40 90.000 5.694 5.727 5.722 5.708

δ = 0.07 100.000 10.190 10.250 10.239 10.223

110.000 16.110 16.201 16.181 16.166

120.000 23.271 23.392 23.360 23.347

r = 0.00 80.000 1.029 1.039 1.037 1.033

σ = 0.30 90.000 3.098 3.129 3.123 3.115

δ = 0.07 100.000 6.985 7.051 7.035 7.026

110.000 12.882 12.988 12.955 12.947

120.000 20.650 20.779 20.717 20.713

r = 0.07 80.000 1.664 1.664 1.664 1.657

σ = 0.30 90.000 4.495 4.495 4.495 4.483

δ = 0.03 100.000 9.251 9.251 9.251 9.237

110.000 15.798 15.798 15.798 15.784

120.000 23.706 23.706 23.706 23.695

Table 1
American call options with the expiry T = 3(year) and the strike price E = 100. We
discretized in 400 intervals in time and 2000 intervals in space. (Step size θk = 0.0003
is used.)

Asset Price 80 90 100 110

Number of Meshes Option Value

(L,M)

(50, 300) 0.213 1.343 4.705 11.038

(100, 500) 0.214 1.361 4.741 11.067

(150, 700) 0.215 1.369 4.755 11.077

(200, 1000) 0.217 1.377 4.768 11.087

(300, 1500) 0.218 1.381 4.774 11.092

Binomial Method 0.219 1.386 4.783 11.098

Table 2
Values of an American call option with T = 0.5, E = 100, r = 0.03, σ = 0.20,
δ = 0.07 by different mesh sizes (Step size θk = 0.001 is used.)

G-differentiability and Riesz’s Representation theorem to derive an extremal
problem whose necessary condition coincides with the variational inequality
formulation of American options.

Among infinite-dimensional optimization problems, the extremal problem we
investigated has a few distinctive properties: (1) the domain set of the de-
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Fig. 1. The result for an American call option when E = 100, r = 0.03, σ = 0.2,
and δ = 0.07.

Fig. 2. The result for an American call option when T = 0.5, E = 100, r = 0.03,
σ = 0.2, and δ = 0.07.

cision variable is defined by boundary conditions and an inequality, which
is called an obstacle in traditional engineering problems, (2) the objective
functional involves parabolic partial derivatives, and (3) the evaluation of the
objective needs an integration from −∞ to +∞. These properties make a
numerical approach to the solution difficult. These difficulties were overcome
by iterative projections onto the domain, the Crank-Nicolson finite-difference
approximations, and a finite length sub-interval approximation, respectively.
We discovered that, when compared with binomial methods and projective
successive over relaxation methods, the proposed gradient projection method
gives fast and accurate solutions for several different American call options. In
addition the gradient projection method with finite difference approximations
provides an easy-to-implement numerical tool for solving American option
pricing problems.

We conclude this paper by noting that the gradient projection method pre-
sented is also applicable to more complicated models of multi-asset options
where underlying asset values are correlated.
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Asset Binomial (L,M) = (20, 100) (L,M) = (50, 300)

Price Method Grad Proj PSOR Grad Proj PSOR

80.000 0.219 0.2476 0.2476 0.2134 0.2134

90.000 1.386 1.2855 1.2855 1.3437 1.3437

100.000 4.783 4.5515 4.5515 4.7068 4.7068

110.000 11.098 10.9719 10.9719 11.0389 11.0389

120.000 20.000 20.0382 20.0382 19.9730 19.9730

Cal Time (sec) 0.0581 0.0816 0.1563 0.2344

# Total Iterations 161 80 233 310

Parameter θk = 0.03 ω = 1.00 θk = 0.01 ω = 1.04

Asset Binomial (L,M) = (100, 500) (L,M) = (200, 1000)

Price Method Grad Proj PSOR Grad Proj PSOR

80.000 0.219 0.2141 0.2142 0.2171 0.2171

90.000 1.386 1.3613 1.3616 1.3773 1.3774

100.000 4.783 4.7415 4.7420 4.7686 4.7687

110.000 11.098 11.0669 11.0672 11.0875 11.0876

120.000 20.000 19.9957 19.9957 19.9975 19.9975

Cal Time (sec) 0.4063 0.7031 2.6406 3.0781

# Total Iterations 406 565 1396 1259

Parameter θk = 0.005 ω = 1.09 θk = 0.002 ω = 1.24

Table 3
A Comparison between Gradient Projection Method and PSOR. T = 0.5, E = 100,
r = 0.03, σ = 0.20, and δ = 0.07. (Binomial method with 15,000 steps is used to
compare the values.)
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