
An Adaptive Large Neighborhood Search Method for the

Drone-Truck Arc Routing Problem

Xufei Liu1, Sung Hoon Chung2, and Changhyun Kwon∗3

1College of Management and E-Business, Zhejiang Gongshang University, Hangzhou, 310018, China,

xufeiliu@zjgsu.edu.cn
2Department of System Science and Industrial Engineering, Binghamton University, Binghamton, NY 13902, U.S.A.,

schung@binghamton.edu
3Department of Industrial and Systems Engineering, KAIST, Daejeon, 34141, Republic of Korea, chkwon@kaist.ac.kr

December 18, 2024

Abstract

For applications such as traffic monitoring, infrastructure inspection, and security, ground

vehicles (trucks) and unmanned aerial vehicles (drones) may collaborate to finish the task

more efficiently. This paper considers an Arc Routing Problem (ARP) with a mixed fleet of

a single truck and multiple homogeneous drones, called a Drone-Truck Arc Routing Problem

(DT-ARP). While the truck must follow a road network, the drone can fly off of it. With

a limited battery capacity, however, the drone has a length constraint, i.e., the maximum

flight range. A truck driver can replace a battery for the drone after each flight trip. We

first transform the DT-ARP into a node routing problem, for which we present a MIP

formulation for the case with a truck and a drone. To solve large-size instances with multiple

drones, a heuristic method based on Adaptive Large Neighborhood Search is proposed. The

performance of ALNS is evaluated on small-size randomly generated instances and large-size

undirected rural postman problem benchmark instances. In addition, an analysis is provided

on the relationship between truck/drone speeds and the drone’s flight range, which affects

the difficulty level to solve. The robustness of ALNS is shown via numerical experiments.

Keywords: Drone-Truck; Arc Routing Problem; Adaptive Large Neighborhood Search

1 Introduction

The rapid development of unmanned aerial vehicles, also called drones, and the use of

advanced technologies have provided new opportunities in many application areas such as aerial

imaging (Rakha and Gorodetsky, 2018), traffic monitoring (Li et al., 2018), infrastructure

inspection (Otto et al., 2018), policing and surveillance (Engberts and Gillissen, 2016; Zeng

et al., 2022; Amorosi et al., 2023), rescue operations (Rabta et al., 2018), product deliveries

(Boysen et al., 2018; Wang and Sheu, 2019), and agriculture (Mogili and Deepak, 2018; Ahirwar

et al., 2019). Drones can improve service thanks to their high speed, low cost, and versatility,

∗Corresponding author

1

mailto:xufeiliu@zjgsu.edu.cn
mailto:schung@binghamton.edu
mailto:chkwon@kaist.ac.kr

and can also promote safety by replacing humans for dangerous operations such as wind turbine

inspection.

A drone is not limited to the ground transportation infrastructure while servicing the edges.

The cooperation of a truck and a drone can be particularly useful for large-scale operations

where some edges require service but there are no access roads to them, such as inspection along

the power lines/pipelines and wind farm monitoring/inspection (Yu et al., 2019). For example,

some electric power lines in mountain areas may not be accessible by ground vehicles while

other areas have access roads. In this case, some edges can be covered by drone only while some

others can be serviced by drone, truck, or both of them. A truck can supply batteries for drones

upon arrival from a flight trip, which makes it possible to overcome the drone’s flight range

limitation. In this paper, we study the drone-truck mixed fleet operations focused on arc routing

applications, so-called the Drone-Truck Arc Routing Problem (DT-ARP). This extends the

traditional arc routing problem where the service may not be limited within the road network

and is done by the mixed fleet working in a cooperative fashion.

The DT-ARP optimizes the truck and drone routes to minimize the total time of completing

all the tasks (all required edges are traversed at least once). Despite the benefits of DT-ARP, it

is a complicated problem to make arc routing decisions. The cooperation between the truck and

the drone poses multiple challenges. First, the decisions on the truck’s route and the drone’s

route are hierarchical and interdependent. The decision on the drone’s takeoff and landing nodes

depends on the truck route. Meanwhile, the truck must move along the route that includes

takeoff and landing nodes. Second, because the drone has limited battery capacity, each flight

trip has a physical constraint, i.e., the maximum flight range. The drones must land on the

truck frequently, and the driver replaces the battery for the drones. Third, it is allowed to fly

over multiple arcs in one flight trip as long as the flight length is less than the maximum flight

range. So, it is the uncertain number of arcs in each trip.

Our DT-ARP is NP-hard because it is a generalization of another well-known arc routing

problem, the Rural Postman Problem (RPP), proven to be NP-hard (Lenstra and Kan, 1976).

As a starting point, we first consider the simple case of a single drone and a single truck, for

which we develop mathematical formulations and a computational method. Then, we extend

our attention to the more complicated cases of multiple drones and a single truck.

Developing a mathematical formulation for the arc routing problems of interest is not

straightforward. The objective function in this paper is to minimize the total time of completing

all tasks, not the total traveling time; therefore, one vital decision variable is the arrival times

at each node. While most current research assumes that the required edges are required to be

traversed once, this paper assumes that the required edge is allowed to be traversed at least once.

The multiple revisit on one node happens when the edge is traversed several times. Because we

do not know how many times the same node will be visited, it is also difficult to determine the

variable index that represents the n-th arrival time at the same node. If we just create a large

enough number of dummy nodes for each node in the original graph, the graph size becomes

very large, and in the meantime, quite a lot of dummy nodes will not be visited. This leads

to a situation where the computation time increases a lot, but the efficiency goes down. It is

also impossible to associate a unique starting and completion time for an edge; hence, the arc

2

routing problem problems with the time are very hard to model directly without extensive graph

modification (Monroy-Licht et al., 2014).

Instead of developing an arc routing formulation, we develop node routing formulations using

two kinds of transformations. The idea is to create side nodes for each node corresponding

to every required edge and only keep these dummy nodes to compose a complete graph. The

traveling salesman problem on this graph is equivalent to the arc routing problem with visiting

all required edges at least once. Pearn et al. (1987) added two side nodes and one middle node

over each required edge and ensured that each edge is traversed when all nodes are visited once.

Longo et al. (2006) added two side nodes over each required edge and ensured that each edge

is traversed when the side nodes are visited in sequence. Then, our single-drone-single-truck

DT-ARP can be transformed into a node routing problem, which becomes a traveling salesman

problem with a drone (TSP-D), wherein the drone can visit multiple nodes in a fly-out; the

resulting problem is called the multi-visit TSP-D (Poikonen and Golden, 2020; Luo et al.,

2021). The formulations are mixed integer program problems that may be solved by off-the-shelf

optimization solvers such as CPLEX or Gurobi.

For large-scale problems, it is essential to develop an efficient heuristic method to solve

DT-ARP. In this paper, we develop an adaptive large neighborhood search (ALNS) algorithm

to solve the problem. ALNS, first proposed by Ropke and Pisinger (2006), is a well-known

iterative metaheuristic framework that has been popularly applied to solving various vehicle

routing problems. ALNS was first applied to the arc routing problem by Laporte et al. (2010),

who solved the capacitated arc routing problem with stochastic demands and multiple vehicles

to minimize the total cost. The key characteristic of ALNS is to destroy an incumbent solution

and repair it to construct a new solution in each iteration (Pisinger and Ropke, 2019). However,

applying ALNS on DT-ARP is not straightforward because two decisions for the truck routes

and drone routes are tangled. We propose efficient destroy and repair methods to handle such

complexity within the ALNS framework in this paper. We also extend our ALNS algorithm to

the more complex case of multiple drones and a truck.

We demonstrate the effectiveness and efficiency of the ALNS algorithm via extensive numerical

experiments. We use the multi-start tabu search (MSTS) algorithm (Luo et al., 2021) devised for

the multi-visit TSP-D as a benchmark, as well as the MIP formulations we develop. Numerical

experiments are conducted for randomly generated instances of various sizes and a set of large-size

benchmark Undirected Rural Postman Problem instances (Corberán et al., 2021b).

The remainder of the paper is written as follows. In Section 2, the related literature is

reviewed. The problem statement and mathematical model are presented in Section 3. Adaptive

Large Neighborhood Search is described in detail in Section 4. In Section 5, the experiment

results validate the performance of ALNS to solve the Drone-Truck Arc Routing Problem.

Conclusions are summarized in Section 6.

2 Related Works

There have been numerous studies to investigate optimization for the arc routing problem.

Although there is rapidly growing literature on the arc routing problems with trucks or drones,

3

the research on the cooperation between the truck and the drone has been previously assessed

only to a limited extent.

Some papers discussed the arc routing problem only with a single vehicle or a fleet of

homogeneous vehicles. Classical arc routing problems include the Chinese Postman Problem,

the Rural Postman Problem, and the Capacitated Arc Routing Problem (Golden and Wong,

1981); see surveys (Eiselt et al., 1995a,b; Corberán and Laporte, 2015; Corberán et al., 2021a)

for rich developments for arc routing problems. Most relevant to our work, Monroy-Licht et al.

(2017) proposed an ALNS algorithm to solve the rural postman problem with time windows

of serving some required edges with one vehicle and solved a set of large instances with up to

104 required edges. Since our problem considers both drones and a truck, our ALNS algorithm

should handle additional complexities.

Some papers consider arc routing problems with drones in various contexts, which include

patrolling (Oh et al., 2011, 2014; Momeni et al., 2022), sensor covering (Sipahioglu et al., 2010;

Dille and Singh, 2013), and traffic monitoring (Chow, 2016; Li et al., 2018; De Maio et al.,

2021). Drone arc routing problems are unique since drones can fly not only over the existing

road networks but also between any two points freely unless prohibited by law or obstructed by

buildings. In this sense, Campbell et al. (2018) studied drone arc routing problems to minimize

the total cost, where drones can travel directly between any two points and approximate each

curve in the plane by a polygonal chain. The drones leave and enter at the points on the

polygonal chain. An iterative algorithm is proposed to solve RPP instances with an increasing

number of points of the polygonal chain. Campbell et al. (2021) also digitized the Length

Constrained K-Drones Rural Postman Problem by a polygonal chain with a finite number

of points. Since we can use similar ideas to introduce polygonal chains in our DT-ARP, we

will restrict drone movements to a predefined graph only in this paper. Altin and Sipahioglu

(2024) considered an extension with multiple service drones and proposed a simulated annealing

algorithm.

Since Murray and Chu (2015) introduced the Traveling Salesman Problem with Flying

Sidekicks, the interaction between trucks and drones—to reduce the total travel cost or the total

completion time of services while considering the drone’s limited service capacity and flying

range—has been popularly considered in the node routing literature (Macrina et al., 2020; Chung

et al., 2020; Moshref-Javadi et al., 2020). For a simpler problem specification, Agatz et al. (2018)

used the term, the Traveling Salesman Problem with Drones (TSP-D). Some assumed the drone

can visit only one node at a time (Agatz et al., 2018; Poikonen et al., 2019; Wang et al., 2019;

Tamke and Buscher, 2021; Bogyrbayeva et al., 2023; Ghiasvand et al., 2024), after which the

drone should come back to the truck, while some assumed drones can visit multiple nodes in a

single fly-out (Poikonen and Golden, 2020; Luo et al., 2021; Jiang et al., 2024).

Multi-visit problems are relevant to our DT-ARP since we can transform DT-ARP into a

multi-visit TSP-D. Although we will provide MIP formulations for such transformed multi-visit

TSP-D, we will develop an algorithm directly for DT-ARP. For multi-visit problems, we introduce

the existing literature. Ha et al. (2020) developed a hybrid genetic search to solve the TSP with

a truck and a drone for delivering parcels to customers with minimizing the completion time.

Di Puglia Pugliese et al. (2021) built an MILP and developed a heuristic method for a last-mile

4

Table 1: A Summary of the Drone-Truck Arc Routing Problem Literature (MILP = Mixed
Integer Linear Programming; MINLP = Mixed Integer Non-Linear Programming)

Reference Truck Drone Objective Visit Req-Edge Req-Edge Visited by Model Method

Amorosi et al. (2021) 1 1 Total distance Required Coverage Drone MINLP Heuristic
Petitprez et al. (2021) M M Cost; Inspection At least once Drone MINLP Hybrid GA

performance
Wu et al. (2022) 1 M Completion time At least once Drone MINLP ALNS
Xu et al. (2023) 1 M Completion time At least once Drone MILP RVND-SA
Amorosi et al. (2023) 1 M Completion time Required Coverage Drone MINLP Heuristic
Xue et al. (2023) M M Travel cost Exactly once Drone MILP Saving heuristic -TS
Sun et al. (2024) M M Travel cost At least once Drone MILP VNS
Zandieh et al. (2024) M M Travel cost At most once (zone) Drone MINLP ILS-VND
This study 1 M Completion time At least once Drone or Truck MILP ALNS

delivery routing problem under time window, capacity, and flying endurance constraints to

minimize the cost. Luo et al. (2022) proposed an iterated local search algorithm for the pickup

and delivery problem. Kuo et al. (2022) developed a mixed-integer programming model for the

cooperation of trucks and drones in the delivery task and considered the customer time windows.

A variable neighborhood search is proposed to solve it to minimize the total traveling costs.

Li et al. (2022) studies how to find suitable drone launch and retrieval locations with moving

trucks and developed ALNS to solve it. Zhou et al. (2023) studied a two-echelon vehicle-drone

routing problem where multiple vehicles and drones work collaboratively to serve customers.

They provided an MILP model and a set-partitioning model and developed a branch-and-price

algorithm. Morandi et al. (2023) solved the traveling salesman problem with a truck and

multiple drones to serve customers in the minimum time and discussed the consequence of

allowing the revisit on each node. Rave et al. (2023) studied the decisions on the vehicle fleet

mix and drone station locations and developed specialized ALNS for the practice-sized instances.

Xia et al. (2023) also developed a branch-and-price-and-cut algorithm based on the Danzig-Wolfe

decomposition framework to solve the vehicle routing problem with load-dependent drones. Jiang

et al. (2024) formulated a MILP for a multi-visit flexible-docking vehciel pickup and delivery

routing problem with a truck and a drone in rural areas and proposed a tailored adaptive large

neighborhood search metaheuristic.

So far, we have discussed research works for drone-truck combined node routing problems.

We introduce the literature of drone-truck arc routing problem now, as summarized in Table

1. Amorosi et al. (2021) formulated an MINLP for the arc routing problem with a mothership

truck and a drone to minimize the total distance. In contrast to other studies, they did not

require every task edge must be visited and just wanted to guarantee the required coverage of the

target graphs. They further extended the problem by considering multiple drones and a truck

to minimize the makespan, and a heuristic was proposed for a large-size real case of inspecting

the people flow during the Cordoba Courtyards Festival (Amorosi et al., 2023). Petitprez

et al. (2021) solved a Two-Echelon vehicle routing problem in which drones fly over linear

infrastructures by Hybrid Genetic Algorithm (HGA). They only allowed the revisitation over an

edge by the drone and used k-th drone index to distinguish the arrival times, while our study

allows it by either the truck or the drone. They ignored the truck’s or the drone’s waiting time

at each rendezvous node. Wu et al. (2022) studied a truck-drone arc routing problem with ALNS

where the predefined number of the drone sortie and k-th drone index distinguish the arrival

5

times at the same node. Xu et al. (2023) studied vehicle-drone arc routing problems, which

coordinated vehicles and drones to monitor road networks, while the drones are used to inspect

some specific road segments. A hybrid algorithm was proposed by combining the randomized

variable neighborhood descent search and simulated annealing algorithm (RVND-SA). They

allowed every target arc to be visited only by drones at least once and prevented one drone from

visiting a node multiple times in a flight. All possible combinations of rendezvous nodes and the

drone index were used to distinguish the multiple arrival times at the same node. Xue et al.

(2023) investigated a two-stage vessel-UAV arc routing problem for offshore oil and gas pipeline

inspection. A two-stage formulation was established to minimize the total travel cost where.

The first stage was a UAV routing problem with fuzzy service time, and the second stage solved

the vessel routing problem. A saving heuristic and a genetic-tabu search heuristic were proposed

to solve the first- and second-stage models, respectively. Sun et al. (2024) studied an integrated

ground vehicles routing problem and an arc routing problem with arc window time where the

drones conducted a pre-reconnaissance of the traveling routes of the ground vehicles. They built

an MILP model and developed a Variable Neighborhood Search algorithm integrated with a

greedy search and simulated annealing. Zandieh et al. (2024) studied a similar problem where

the drones must surveil the ground vehicle through the link ahead before the ground vehicle

leaves the customers’ points. An improved iterated local search (ILS) algorithm was designed

to optimize the proposed problem. The ground vehicles are responsible for delivering goods to

customer points, and the drones surveil the road arcs (Sun et al., 2024) and zones (Zandieh

et al., 2024). Corberán et al. (2025) considered a combined truck-drone arc routing problem

considering the makespan minimization objective and simultaneous location decisions.

Our problem is similar to the paper by Wu et al. (2022) that studied a coordinated vehicle-

drone arc routing problem with an adaptive large neighborhood search. The first difference

is that they restricted some edges required to be serviced only by the drone, while we do

not have this assumption in our paper. The second difference is that they only established a

nonlinear mathematical model and did not try to solve the model to validate it. We will build a

mixed-integer linear program, and the optimal solution can be obtained by solving MIP with

Gurobi solver. The solutions obtained from MIP can be considered as Upper-Bound to validate

the effectiveness of our proposed approach. The third difference is the encoding rule of the

ALNS method. They encoded a route as a matrix. In our ALNS, a route is encoded by the

string of arcs that represent the sequence of traversing the arcs. The encoding form of the string

enables simplifying the computations.

3 Problem Formulation

For a single drone and a single truck case, the DT-ARP can be described as follows using

the notation given in Table 2. Let G = (N , E) be an undirected connected graph. The depot is

labeled as node 1. As stated in Section 1, for some applications such as traffic monitoring and

security inspection, specific road segments and power lines/pipelines are required to be serviced.

Due to the high speed, safety, low cost, and versatility, the drone working in tandem with the

truck can improve service. The truck and the drone cooperatively complete the task in which

6

Table 2: Mathematical Notation

Graphs and Sets

G Original undirected graph, G = (N , E)
N Set of original N nodes, N = {1, 2, ..., N}; node 1 is the depot.

E Set of original undirected edges, E ∈ EDR

Edr Set of original undirected edges, including extended edges available for the drone

R Set of original undirected required edges R ⊂ E

V Set of nodes after a transformation with V = |V|
V ′ Set of nodes with a dummy node, V ′ = V ∪ {V + 1}
V1 Set of nodes excluding the depot, V1 = V \ {1}
Q Set of undirected required edges after a transformation

A Set of directed arcs after a transformation, induced by V ′

Constants

cij Distance of edge (i, j) ∈ E
dtr(i, j) Distance of arc (i, j) ∈ A for the truck after a transformation

ddr(i, j) Distance of arc (i, j) ∈ A for the drone after a transformation

vtr Truck speed

vdr Drone speed

ttrij Time of traversing arc (i, j) ∈ A for the truck

tdrij Time of traversing arc (i, j) ∈ A for the drone

e Maximum flight time, e = Maximum Drone flight distance
vdr

Variables

xtrij 1, if the truck traverses through arc (i, j) ∈ A; Otherwise, 0.

xdrij 1, if the drone traverses through arc (i, j) ∈ A; Otherwise, 0.

ytri 1, if node i ∈ V1 is visited only by the truck; Otherwise, 0.

ydri 1, if node i ∈ V1 is visited only by the drone; Otherwise, 0.

ycbi 1, if node i ∈ V1 is combined node where a drone launches or lands; Otherwise, 0.

ntr
i The ordered visit sequence of nodes for the truck

ndr
i The ordered visit sequence of nodes for the drone

fi The flight duration when the drone arrives at node i ∈ V.
ai The arrival time of the truck or the drone at node i ∈ V.

7

1

2 3 4

5

6

7

8 9 10

(a) An Example of Original ARP Graph
G

1

2 3 4

5

6

7

8 9 10

(b) An Arc-Solution of Truck-Drone
Routes

Figure 1: An Example of An Arc-Solution (green lines are the required edges; In Figure b: one
truck and one drone depart from and return to the depot Node 1; dashed lines are drone flight
route; solid lines are truck route; double solid lines represent the routes of truck carrying the
drone)

the required edges must be traversed at least once. Define R as the set of required edges that

must be served either by the truck or the drone. The aim is to find the truck and drone routes

to minimize the makespan, i.e., the time between departure from and return to the depot.

We introduce some simplifying assumptions about the drone.

Assumption 1. Because a drone can fly off the actual road edge, the drone flight network is

larger than the actual road network G. Define the set of drone flight edges Edr. Assume that

Edr consists of all available paths between any two nodes i, j ∈ N in regards to the drone’s flight

regulations. The distance of drone flight is calculated as the horizontal distance for the sake of

simplicity.

Assumption 2. The drone has a maximum flight range because of its limited battery capacity.

The drone must fly back to a truck before the battery runs out. After the drone lands on the

truck, the driver replaces a fully charged backup battery and makes sure the drone gets prepared

for the next trip.

Assumption 3. The times for the drone to launch and land are neglected. The time to replace

the battery is also neglected.

Figure 1 illustrates an example of an arc solution. It comprises truck and drone routes which

are the sequence of traversing the arcs. In the example, the truck route is {(1,6),(6,9),(9,10),(10,6),(6,7),
(7,3),(3,2),(2,1)} and the drone route is {(1,5),(5,8),(8,9),(9,10),(10,6),(6,7),(7,4),(4,3),(3,2),(2,1)}.
The overlap between the two routes means the drone gets aboard the truck.

One of the major considerations in the formulation for DT-ARP is how to calculate the

accurate arrival times at each node when the objective function is to minimize the makespan,

not the total cost. If we directly study the arc routing problem, it is hard to find a way to

8

formulate MIP. Because multiple arcs are connected to one node, one node can be visited by

uncertain multiple times. For example in Figure 1, there are two arrival times at Node 6. In

order to overcome this challenge, we use arc-to-node transformation to deal with the multiple

visits at the same node. The arc-to-node transformation enables one node to be split into side

nodes. For example in Figure 1, Node 6 is connected with two edges, and thus Node 6 has two

side nodes, s69 and s6,10. The arrival times at node s69 and s6,10 represent the first and the

second arrival time at node 6, respectively.

The formulation for DT-ARP is made in two stages: (1) transforming the arc routing problem

into the corresponding node routing problem; (2) formulating a mixed integer program. The

final truck route and the drone route can be obtained by transforming back the node routing

solutions to the original arc routing problem.

3.1 Transforming to node routing problems

We apply two arc-to-node transformation methods proposed by Pearn et al. (1987) and

Longo et al. (2006). Pearn et al. (1987) replaced each required edge with three nodes while

Longo et al. (2006) used two nodes and achieved the same objective with additional constraints.

3.1.1 The 3-Node Transformation

Pearn et al. (1987) transformed arc routing problems into node routing problems by replacing

each required edge (i, j) ∈ R by two side nodes sij and sji along with a middle node mij . We

let mij = mji denote the same middle node. The corresponding node routing problem is defined

on the set of nodes

V =
⋃

(i,j)∈R

{sij ,mij , sji} ∪ {1},

and all undirected edges between the nodes to construct an undirected complete graph. The

purpose of the middle node mij is to ensure that the shortest path between two side nodes sij

and sji is always sij → mij → sji or sji → mij → sij in sequence. Passing the middle node mij

fulfills traversing the required edge. Therefore, we do not need the set of required edges in the

transformed node routing problem. The resulting graph will have 3|R|+1 nodes. An example is

shown in Figure 2, where three nodes are introduced for each required edge. The original nodes

2, 3, and 4 are not part of the new transformed graph, but the depot node 1.

The length of each edge in the transformed graph is calculated as follows:

d(sij , skl) =


0 if (i, j) = (k, l)

cij if (i, j) = (l, k)

dist(i, k) if (i, j) ̸= (k, l), (i, j) ̸= (l, k)

d(1, sij) = dist(1, i)

d(mij , u) =

1
2cij if u = sij or sji

∞ otherwise

where dist(i, j) is the shortest path length between node i ∈ N and j ∈ N in the original graph

9

1

2 3

4

7.1 7.
1

10

7.
1 7.1

s13

s31

m13

s23 s32m23

Figure 2: A 3-node transformation example with new nodes introduced by Pearn et al. (1987)
(original arc distance is shown next to each arc; green lines are the required edges)

based on the edge length cij . Since the graph topology for the truck and the graph topology for

the drone are different, a length function d(·, ·) is created for the truck and the drone separately:

dtr(·, ·) and ddr(·, ·), respectively.
Note that the above distance calculation rule is different from the original form in Pearn

et al. (1987), but similar to the 2-node transformation of Longo et al. (2006). This modification

will enable us to calculate the arrival times and the makespan accurately later in our MIP

formulation.

3.1.2 The 2-Node Transformation

Longo et al. (2006) replaced each required edge (i, j) ∈ R with two nodes sij and sji. The

set of the undirected required edges Q is then defined as follows:

Q = {(sij , sji)|(i, j) ∈ R}

In the 2-node transformation, traversing the required edge (i, j) is the same as visiting two nodes

sij and sji in sequence (sij → sji or sji → sij), which we need to enforce in an optimization

problem. While the 2-node transformation reduces the size of the transformed graph, it requires

additional constraints. The transformed node routing problem is defined on the complete

undirected graph with the node set:

V =
⋃

(i,j)∈R

{sij , sji} ∪ {1},

and it has 2× |R|+ 1 nodes.

10

1

2 3

4

7.1 7.
1

10

7.
1 7.1

s13

s31

s23 s32

(a) Original ARP graph G

1

s13

s31

s23 s32

0

7.
17.1

7.1

7
.1

7.
1

010

10

(b) Corresponding VRP complete graph
H

Figure 3: Longo et al. (2006) Transformation from ARP to VRP (Green lines show the required
edges. The values above edges are the distance between internodes) in Figure 3b.

The distances between internodes are calculated as follows (Longo et al., 2006):

d(sij , skl) =


0 if (i, j) = (k, l)

cij if (i, j) = (l, k)

dist(i, k) if (i, j) ̸= (k, l), (i, j) ̸= (l, k)

d(1, sij) = dist(1, i)

where dist(i, j) is the shortest path distance between node i and j. As in the 3-node transforma-

tion case, dtr(·, ·) and ddr(·, ·) are created for the truck and the drone, respectively.

During the transformation from arc routing problem to node routing problem, the solution

changes from arc solution to node solution. The node solution is the sequence of visiting nodes.

We can get the node-solution by solving the MIP formulation in Section 3.2. The arc solution

can be obtained from the equivalent node solution by applying the arc-to-node transformation

method in the reverse direction. In the reverse transformation, firstly the side node is transformed

back to its original node. In the next step, two adjacent nodes are connected by the shortest

path based on the original network.

For example in Figure 1, the truck route in node form is obtain as {1, s69, s96, s10,6, s6,10, s21, s12, 1}.
Transform side node into original node: {1, 6, 9, 10, 6, 2, 1}; Then connect any two adjacent

nodes with the shortest path: the truck route in arc form is {(1,6),(6,9),(9,10),(10,6),(6,7),
(7,3),(3,2),(2,1)}. The drone route in node form is obtained as {1, s15, s51, s89, s98, s10,6, s6,10, s43, s34, s21, s12, 1}.
The side nodes are converted into the original node: {1, 5, 8, 9, 10, 6, 4, 3, 2, 1}. The drone route

in arc form is {(1,5),(5,8),(8,9),(9,10),(10,6),(6,7),(7,4),(4,3),(3,2),(2,1)}.

11

3.2 MIP Formulation

For the transformed node routing problem, we build a MIP formulation, extended from

the formulation provided by Roberti and Ruthmair (2021) for TSP-D. We make the following

modifications and extensions from Roberti and Ruthmair (2021) to accommodate the unique

characteristics of DT-ARP. First, they set the arrival time at one node based on the assumption

that the drone’s speed is greater than the truck’s speed. We do not need this assumption.

We modify the arrival time restriction as in Constraint (17) so that the time through one arc

depends on the truck’s speed when the drone gets aboard the truck (xtrij = xdrij = 1). Second,

their subtour elimination constraints (arrival times restriction) become invalid here, because

some distances between internodes are zero in our problem, such as d1,s13 = ds31,s32 = 0 shown

in Figure 3b. Therefore, we introduce the variables ntr and ndr to denote the ordered sequence

of visiting nodes. Additional constraints, (13) and (14), are added to eliminate subtours. Third,

they restricted the drone is allowed to serving only one node during a single flight trip, while

our formulation allows it to serve multiple nodes during a single flight trip.

In what follows, the vertex set V ′ is defined as V ′ = V ∪{V +1}, where node V +1 represents

depot-enter node. Define V1 = V \ {1} as the set of nodes excluding the depot. The undirected

edges are extended as directed arcs A = {(i, j)|i, j ∈ V : i ̸= j} ∪ {(i, V + 1)|i ∈ V : i ̸= 1}. The
mathematical formulation is described as follows.

The Objective Function We aim to find routes of a truck and a drone to minimize the total

completion time, i.e., the makespan. The value of the makespan is calculated between the times

when the truck leaves and returns to the depot as follows:

minimize aV+1 (1)

Required Edges Each undirected required edge must be traversed at least once by the truck

or the drone, as in Constraint (2). It is noted that Constraint (2) is only needed for the 2-node

formulation. In the 2-node transformation, visiting sij and sji in sequence ensures traversing the

edge (i, j). This ensures that all originally required edges are traversed when all side vertices are

visited. Constraint (3) restricts that truck routing decision xtr and drone routing decision xdr

are binary variables.

xtrij + xtrji + xdrij + xdrji ≥ 1 ∀(i, j) ∈ Q (2)

xtrij , x
dr
ij ∈ {0, 1} ∀(i, j) ∈ A (3)

Flow for Truck Route The truck leaves and returns to the depot exactly once. Outflow

at the depot-leave node 1 is 1 and inflow at depot-enter node V + 1 is also 1 (Constraint (4)).

Constraint (5) restricts the flow balance for other nodes.∑
(1,j)∈A

xtr1j =
∑

(i,V+1)∈A

xtri,V+1 = 1 (4)

∑
(i,j)∈A

xtrij −
∑

(j,i)∈A

xtrji = 0 ∀i ∈ V1 (5)

12

1

2

3 4

5 6 7

8

91011

depot

combined node combined node

combined nodecombined node

drone node drone node

drone node

truck node combined node

truck node

Figure 4: An example for node category in one flight trip (solid lines are the truck route; dashed
lines are the drone route; double lines are route of the truck carrying the drone)

Flow for Drone Route Constraints (6) and (7) restrict the flow balance for the drone route.∑
(1,j)∈A

xdr1j =
∑

(i,V+1)∈A

xdri,V+1 = 1 (6)

∑
(i,j)∈A

xdrij −
∑

(j,i)∈A

xdrji = 0 ∀i ∈ V1 (7)

Node Category Let ytri be a binary variable equal to 1 if node i ∈ V1 is only visited by the

truck, called a truck node. ydri is a binary variable that is equal to 1 if node i ∈ V1 is only

visited by the drone, called drone node. Let ycbi ∈ {0, 1} be equal to 1 if node i ∈ V1 is visited

by both the truck and the drone, called the combined node.

In the example in Figure 4, all nodes are divided into three categories excluding the depot.

The drone traverses through combined and drone nodes, and the truck traverses through combined

and truck nodes. It is noted that the drone launches or lands at the combined nodes but not all

combined nodes are chosen for launching or landing. In the example, Node 7 is visited by the

truck and the drone onboard, and is not chosen for launching or landing. Each arc in the drone

route can connect with the combined or the drone node, and however it can not connect with

the truck node.

Constraint (8) ensures that each node must be one of three categories of nodes. Constraint

(9) ensures each arc in the drone route is not connected with a truck node. Constraints (10) and

(11) link xtrij and xdrij with y and ensure that along the truck (drone) route, the node is either

truck (drone) node or combined node. Constraint (12) ensures variable y.

ytri + ydri + ycbi = 1 ∀i ∈ V1 (8)

xdrij + xdrji ≤ (1− ytri) + (1− ytrj) ∀(i, j) ∈ A : i, j /∈ {1, V + 1} (9)∑
(i,j)∈A

xtrij = ytri + ycbi ∀i ∈ V1 (10)

∑
(i,j)∈A

xdrij = ydri + ycbi ∀i ∈ V1 (11)

ytri , ydri , ycbi ∈ {0, 1} ∀i ∈ V1 (12)

13

Subtour Elimination The subtour elimination constraints are added to avoid causing subtours

for the truck (13) and for the drone (14). Let ntr
i and ndr

i denote the sequence order of visiting

nodes for the truck and the drone, respectively. Let V = |V|.

ntr
j ≥ ntr

i + V xtrij − (V − 1) ∀(i, j) ∈ A (13)

ndr
j ≥ ndr

i + V xdrij − (V − 1) ∀(i, j) ∈ A (14)

ntr
i , ndr

i ∈ Z+ ∀i ∈ V1 (15)

where Z+ denotes the set of nonnegative integers.

Arrival Time Let ai ∈ R+ be the arrival time of the truck or the drone at node i ∈ V . Define

ttrij and tdrij be the time of traversing arc (i, j) for the truck and the drone, respectively:

ttrij =
dtr(i, j)

vtr
and tdrij =

ddr(i, j)

vdr

where dtr(i, j) and ddr(i, j) are calculated using the 3-node or 2-node transformation function.

Constraints (16) and (17) set the arrival times of the truck and the drone at the node. It is noted

that when the drone gets aboard the truck (xdrij = 1, xtrij = 1), the arrival time at node j only

depends on the truck’s traverse time. Constraints (18) and (19) show that the total completion

time cannot be lower than the summation of the traverse time by the truck or by the drone.

Constraint (20) restricts that the arrival time at each node is a nonnegative continuous variable.

aj ≥ ai + ttrij −M(1− xtrij) ∀(i, j) ∈ A (16)

aj ≥ ai + tdrij −M(1− xdrij)−Mxtrij ∀(i, j) ∈ A (17)∑
(i,j)∈A

ttrij x
tr
ij ≤ aV+1 (18)

∑
(i,j)∈A

tdrij x
dr
ij ≤ aV+1 (19)

ai ≥ 0 ∀i ∈ V ′ (20)

Drone Flight Range The drone has a maximum flight range because of the limited battery.

Let e be the maximum consecutive flight time. Constraint (21) guarantees that the drone can

not traverse an arc whose flight time exceeds e unless the drone gets aboard the truck. A variable

fi is introduced to track the flight time in a trip. Constraint (22) sets the tracking flight time fi.

The flight time of a trip must be not greater than e, as in Constraint (23).

xdrij ≤ xtrij ∀(i, j) ∈ A : tdrij > e (21)

fj ≥ fi + tdrij −M(1− xdrij)−Mxtrij ∀(i, j) ∈ A (22)

0 ≤ fi ≤ e ∀i ∈ V ′ (23)

Final Formulation The formulation for the Drone-Truck VRP is summarized as follows:

minimize aV+1 (24)

14

subject to xtrij + xtrji + xdrij + xdrji ≥ 1 ∀(i, j) ∈ Q (25)∑
(1,j)∈A

xtr1j =
∑

(i,V+1)∈A

xtri,V+1 = 1 (26)

∑
(i,j)∈A

xtrij −
∑

(j,i)∈A

xtrji = 0 ∀i ∈ V1 (27)

∑
(1,j)∈A

xdr1j =
∑

(i,V+1)∈A

xdri,V+1 = 1 (28)

∑
(i,j)∈A

xdrij −
∑

(j,i)∈A

xdrji = 0 ∀i ∈ V1 (29)

ytri + ydri + ycbi = 1 ∀i ∈ V1 (30)

xdrij + xdrji ≤ ycbi + ydri + ycbj + ydrj ∀(i, j) ∈ A : i, j /∈ {1, V + 1} (31)∑
(i,j)∈A

xtrij = ytri + ycbi ∀i ∈ V1 (32)

∑
(i,j)∈A

xdrij = ydri + ycbi ∀i ∈ V1 (33)

ntr
j ≥ ntr

i + V xtrij − (V − 1) ∀(i, j) ∈ A (34)

ndr
j ≥ ndr

i + V xdrij − (V − 1) ∀(i, j) ∈ A (35)

aj ≥ ai + ttrij −M(1− xtrij) ∀(i, j) ∈ A (36)

aj ≥ ai + tdrij −M(1− xdrij)−Mxtrij ∀(i, j) ∈ A (37)∑
(i,j)∈A

ttrij x
tr
ij ≤ aV+1 (38)

∑
(i,j)∈A

tdrij x
dr
ij ≤ aV+1 (39)

xdrij ≤ xtrij ∀(i, j) ∈ A : tdrij > e (40)

fj ≥ fi + tdrij −M(1− xdrij)−Mxtrij ∀(i, j) ∈ A (41)

0 ≤ fi ≤ e ∀i ∈ V ′ (42)

xtrij , x
dr
ij ∈ {0, 1} ∀(i, j) ∈ A (43)

ytri , ydri , ycbi ∈ {0, 1} ∀i ∈ V1 (44)

ntr
i , ndr

i ∈ Z+ ∀i ∈ V1 (45)

ai ≥ 0 ∀i ∈ V ′ (46)

Again, Constraint (25) is only required for the 2-node formulation but not for the 3-node

formulation.

4 Adaptive Large Neighborhood Search

In this section, we develop an Adaptive Large Neighborhood Search algorithm for the Drone-

Truck Arc Routing Problem. ALNS was first applied to the pickup and delivery problem with

time windows (Ropke and Pisinger, 2006). Laporte et al. (2010) first applied ALNS to solve the

arc routing problem to minimize the total cost. ALNS is a well-known popular iterative algorithm

15

Algorithm 1: Pseudocode for ALNS

Input: G, R, DM, RM, Nmax, Zmax

Output: Xbest, Ybest
1 Initialize the truck required edges route Xr0 and the drone required edges routes Yr0

(Sec 4.2);
2 Initialize destroy methods probability P0

D and repair methods probability P0
R (Sec 4.5);

3 Xrbest ← Xrcurrent ← Xr0, Yrbest ← Yrcurrent ← Yr0;
4 Encode the required edges route into the complete route

Xbest, Ybest ← encode(Xrbest, Yrbest) (Sec 4.1);
5 Calculate the makespan of current best solution tbest ← f(Xbest, Ybest);
6 N ← 1, Z ← 0;
7 while N ≤ Nmax, Z ≤ Zmax do
8 Select a destroy method d ∈ DM with probability PN

D ;
9 Select a repair method r ∈ RM with probability PN

R ;
10 Let Xrnew and Yrnew be the new required edges solution obtained by appling destroy

d and repair r on Xrcurrent, Yrcurrent;
11 Obtain the complete truck route and drone route Xnew, Ynew ← encode(Xrnew, Yrnew);
12 if f(Xnew, Ynew) < tbest then
13 Xbest ← Xnew, Ybest ← Ynew, tbest ← f(Xnew, Ynew), Xrbest ← Xrnew,

Yrbest ← Yrnew, Z ← 0;

14 else
15 Z ← Z + 1;

16 v = e−(f(Xnew,Ynew)−f(Xcurrent,Ycurrent))/T ;
17 Generate a random number ϵ ∈ [0, 1] ;
18 if ϵ < v then
19 Xrcurrent ← Xrnew, Yrcurrent ← Yrnew;

20 T ← hT ;

21 Update PN
D and PN

R (Sec 4.5);
22 N ← N + 1;

to solve various vehicle routing problems. The idea of ALNS is to search in a neighborhood by

destroying an incumbent solution and repairing it to construct a new solution in each iteration.

The adaptivity is achieved by determining the choices of several destroy and repair methods on

their previous successes.

The procedure of the proposed ALNS is shown in Algorithm 1. We let DM and RM denote

the set of the destroy and repair methods, respectively. The solution has two decisions: the

truck route and the drone route. The key part is how to determine the sequence of traversing

the required edges. Thus, it is vital to create Xr and Yr, which represent the sequence of

required arcs traversed by the truck and the drone. In each iteration, the new Xr and Yr in the

neighborhood are produced by applying to destroy and repair. The destroy process removes

some edges from the truck-required edges route Xr and drone-required edges route Yr. Next, the

repair process can partially reconstruct the required edges route Xr and Yr. Then, the complete

truck route X and drone route Y are obtained by encoding from Xr and Yr, described in Section

4.1. The destroy and repair methods are chosen by using the roulette-wheel selection principle

based on their probabilities. When the method creates a better solution, the probability of

the corresponding method increases, as described in section 4.5. The new solution is accepted

16

by the simulated annealing acceptance criterion. The new solution is accepted if its objective

value is better than the current best solution; otherwise, the new solution is accepted by the

probability of ϵ < exp
(
−(f(Xnew, Ynew)− f(Xcurrent, Ycurrent))/T

)
, where ϵ is random number

in the interval [0,1]. We let T denote the value of the temperature and gradually decrease at

each iteration by a rate h ∈ [0, 1]. The stop criteria are the maximum iterations Nmax and

non-improving iteration Zmax.

4.1 Encoding and Decoding

The feasible solution in ALNS has two decisions: the truck route X and the drone route

Y . The route is encoded by the string of arcs that represent the sequence of traversing the

arcs. Let Xr and Yr denote the sequence of required edges traversed by the truck and the drone,

respectively. It is noted that the edges in Xr and Yr do not have a direction.

The decoding rule turns Xr and Yr into the complete route solution X and Y . The decoding

rule is made in two steps: (1) construct the complete truck route X; (2) connect the edges in Yr

to the truck route X.

Step 1: Any two required edges in Xr are connected with the shortest path. Define (va, va+1)

is the first edge in Xr. Starting from the depot 1, calculate the shortest distance dist(1, va)

and dist(1, va+1) and choose the shortest path to connect. If dist(1, va) < dist(1, va+1), add

{(1, va), (va, va+1)} in X; otherwise, add {(1, va+1), (va+1, va)}. The next unassigned edge

(vb, vb+1) in Xr will connect with the last node v in the current partial X. Choose the shortest

path v → vb or v → vb+1 to append to the end in X. Complete the truck route until all required

edges in Xr are done.

Step 2: Connect drone-required edges Yr to the truck route X by a greedy rule. First,

extract all nodes from the truck route X as Vx = {1, v1, v2, ...}. Initialize the drone truck

Y = {(1, v1), (v1, v2), ..., (vi, vi+1), ...}. Try to insert a drone edge ∀(a, b) ∈ Yr in all possible

locations between any two nodes ∀vi, vj ∈ Vx. Choose the direction of drone edges with the

smallest distance between dist(vi, a) + dist(vj , b) and dist(vi, b) + dist(vj , a). Calculate the

increased value in the objective value before and after inserting the edge. Choose the location

with the least increased objective value to insert the edge (a, b). Let vi and vj represent the

best insertion location. The section between node vi and vj in the current Y is replaced with

the drone edge (a, b). Y becomes {..., (vi−1, vi), (a, b), (vj , vj+1), ...}. Next, remove the nodes

between node vi and vj , and put the vertices a, b in Vx = {..., vi, a, b, vj , ...}. Repeat the above

procedure until all required edges in Yr are done.

Two constraints must be satisfied to construct the drone route:

1. The drone-required edges can not insert between two nodes belonging to an arc in Yr. For

example, the drone-required edge can not insert between a and b.

2. The flight distance must be less than or equal to the maximum drone flight range.

4.2 Initial Solution

The initial Xr and Yr are created by the Nearest Neighborhood Search. First, the required

edges are randomly assigned to the truck set Sxr and the drone set Syr. Next, the required

17

edges route is constructed progressively by adding the nearest edge. The procedure is shown in

Algorithm 2.

The distance between any two edges (a, b) and (c, d) shows spatial closeness and is defined

as the following equation.

diste

(
(a, b), (c, d)

)
=

1

4

(
dist(a, c) + dist(b, d) + dist(a, d) + dist(b, c)

)
(47)

where dist(i, j) is the shortest path distance between node i and j in the graph G.

Algorithm 2: Pseudocode for initialization required edges route

Input: The set of the required edges for the truck or the drone Sr
Output: The required edges route r

1 r ← {(a, b)} with (a, b) = argmin{diste
(
(1, 1), (a, b)

)
, ∀(a, b) ∈ Sr};

2 while Sr ̸= ∅ do
3 (c, d)← the last edge in r;
4 Add the nearest edge (u, v) to the end of r with

(u, v) = argmin{diste
(
(c, d), (u, v)

)
,∀(u, v) ∈ Sr};

5 Sr ← Sr \ (u, v);

4.3 Destroy Methods

Three methods (Random Removal, Worst Route Removal, and Cluster Removal) are applied

to destroy a feasible solution.

4.3.1 Random Removal

A certain percentage q% of edges from the truck and the drone required edges route Xr and

Yr are randomly removed.

4.3.2 Worst Route Removal

Given a solution (Xr, Yr), the cost for the required edge e is defined as the difference value in

the objective function before and after removing edge e from the current solution. It is expressed

as

cost(e,Xr, Yr) = max
{
f
(
encode(Xr, Yr)

)
− f−e

(
encode(Xr, Yr)

)
, 0
}

(48)

when f−e(·) is the objective function value before and after removing edge e from current solution.

Sort all costs for required edge e ∈ R in the descending order. Remove the first ⌊q% × |R|⌋
edges with the largest costs from Xr and Yr.

4.3.3 Cluster Removal

The idea of cluster removal is to avoid generating a similar new solution and try to jump into

a farther neighborhood to get a solution with the largest change. The relatedness between two

edges (u, v) and (i, j) is measured by considering two factors: distance and time. The distance

18

represents the spatial closeness of these two edges. It is defined as the average of the distance of

start points and endpoints of two edges (u, v) and (i, j) and calculated as Equation (47).

The time between two edges (u, v) and (i, j) represents temporal closeness and is defined as

the average of the arrival times at start points and leave times at endpoints.

t
(
(u, v), (i, j)

)
=

1

4

(
|au − ai|+ |av − aj |+ |au − aj |+ |av − ai|

)
For any edge (u, v) ∈ R, the measure of relatedness is defined as the following equations.

R((u, v), (i, j)) = w1
diste((u, v), (i, j))

max{diste((u, v), (k, l)),∀(k, l) ∈ R}
(49)

+ w2
t((u, v), (i, j))

max{t((u, v), (k, l)),∀(k, l) ∈ R} −min{t((u, v), (k, l)),∀(k, l) ∈ R}

where w1 and w2 are weights with the sum of 1.

The smaller R((u, v), (i, j)) is, the more related the two edges are. Following steps are followed:

randomly select a required edge (u, v) ∈ R and calculate R((u, v), (i, j)),∀(i, j) ̸= (u, v) ∈ R.
Sort all R((u, v), (i, j)) in descending order. Remove edges with first ⌊q%× |R|⌋ in the sequence.

4.4 Repair Methods

There are three repair methods to reconstruct the partial truck and drone required edges

route Xr and Yr. The repair methods are Random Insertion, Greedy Insertion, and Regret

Insertion.

4.4.1 Random Insertion

Given partial truck required edges route Xr and drone required edges route Yr, randomly

insert the undecided required edges into them.

4.4.2 Greedy Insertion

The idea of the greedy insertion heuristic is to find the best insertion. A concept of Insertion

Cost I(e, p,Xr, Yr) is introduced to denote the change in the objective value when inserting the

edge e into Xr or Yr at position p. It is expressed as

I(e, p,Xr, Yr) = ∆f(e, p,Xr, Yr). (50)

Select the position p to insert e with the least insertion cost I(s, p,Xr, Yr). Repeat the above

steps until all required edges are satisfied.

4.4.3 Regret Insertion

The regret insertion is improved by incorporating look-ahead information when selecting the

required edge to insert.

19

For any required edge e ∈ R, the regret-k cost is defined as

R(e,Xr, Yr) =

k∑
j=1

{∆fj(e,Xr, Yr)−∆f1(e,Xr, Yr)}, (51)

where ∆f(e,Xr, Yr) is the increased value in the objective value after inserting edge e. Sort

∆f(e,Xr, Yr) for all possible insertion positions in the increasing order. ∆fk(e,Xr, Yr) means

the increased value in the objective for the k-th best insertion position. The best insertion

position has the least ∆f1(e,Xr, Yr). The regret insertion is the reconstruction heuristic that

chooses to insert the required edge with the maximum R(e,Xr, Yr) and insert this edge into

the position with the least insertion cost. Repeat the above steps until all required edges are

inserted.

4.5 Adaptive Probability Update

The adaptivity of ALNS is achieved by selecting the destroy and repair methods based on

their previous successes. In each iteration, the methods are chosen by the roulette wheel selection

principle based on their probabilities.

The weights are introduced to track the score to measure how well the methods have

performed. If the weight is larger, that means the destroy and repair methods create more

accepted solutions in previous iterations. The method is chosen by higher probability based

on a larger weight. The initial weights are equal to 1. In iteration i, the destroy method d

and the repair method r are used. The weight is updated by adding a score of the amount

σ1, σ2, σ3, or 0. If the methods create a new global best solution, the weight wi+1
d ← wi

d + σ1

and wi+1
r ← wi

r + σ1; if the new solution is accepted with a better objective value than the

current solution but not the global best one, wi+1
d ← wi

d + σ2 and wi+1
r ← wi

r + σ2; if the new

solution is accepted with a worse objective value than the current solution, wi+1
d ← wi

d + σ3 and

wi+1
r ← wi

r + σ3; otherwise, w
i+1
d ← wi

d and wi+1
r ← wi

r.

Then, the probability vectors of destroy and repair methods in iteration i are updated as

follows:

Pi
D =

(
wi
d∑

d′∈DMwi
d′

: d ∈ DM

)
(52)

Pi
R =

(
wi
r∑

r′∈RMwi
r′

: r ∈ RM

)
. (53)

5 Numerical Experiments

The experiments are conducted on the workstation with a 2.2GHz Intel Xeon Processor and

32GB RAM. The MIP formulations in Section 3.2 is solved in Julia 1.6.1 by calling Gurobi

v0.9.12. The proposed ALNS is run in Julia v1.6.1. The experiments are implemented on

randomly generated data and a set of undirected rural postman problem instances.

The performance of ALNS relies on parameters whose values are tested individually. The

values of parameters are tuned as follows. To choose a parameter and test it with the different

20

values from the chosen set. Meanwhile, the other parameters remain unchanged. The parameters

in ALNS are calibrated as follows: the maximum iteration Nmax is 3000; maximum non-improving

iteration Zmax is 300; the initial temperature T0 is 100; temperature annealing rate h is 0.95; the

amounts added to the weights (σ1, σ2, σ3) = (0.5, 0.3, 0.2); the percentage of removal q% is 30%.

Benchmark We use the multi-start tabu search (MSTS) algorithm of Luo et al. (2021),

developed for the multi-visit TSP-D problem, as a benchmark. After the 3-node reformulation,

we can convert the drone-truck arc routing problem into a multi-visit TSP-D problem, which can

be solved by MSTS. We created our own implementation of MSTS in Julia v1.6.1 to compare

the performances.

5.1 One Truck and One Drone

5.1.1 Small-Scale Instances

The small-scale data are randomly generated when the number of nodes |N | = 10 or 15, the

number of edges |E| = 20 or 30, the number of required edges |R| = 5, 7, 10. The vertices are

randomly distributed in a 100 × 100 square region. The required edges are randomly chosen

from all edges. Each type of randomly generated data has 25 instances. Define the maximum

flight time

e =
β

vdr

∑
(i,j)∈Edr ddr(i, j)

|Edr|
.

The parameter β is set as 1,2,3, which determines the flight range. The speed of the truck vtr

and the speed of the drone vdr are selected as equal (1,1), slower (1,2), and faster (2,1).

We use two transformation rules to convert ARP into 2× |R|+ 1 and 3× |R|+ 1 VRP. The

Single-Drone-Single-Truck results over the randomly generated data when N = 10 are shown in

Table 3.

Column Obj means the average objective values solved by MIP-3 (Pearn et al., 1987), MIP-2

(Longo et al., 2006), MSTS (Luo et al., 2021) and ALNS. The optimal solution can be obtained by

MIP-3 and MIP-2 solved via Gurobi when the number of required edges |R| is 5 or 7. When |R|
is 10, the instance becomes very large and they cannot be solved to optimality in the limited run

time of 3600s. To compare between solutions obtained by MIP formulation and two algorithms,

Gap% in terms of objective values is used and defined as follows:

Gap% =
Objective of Algorithm−min{Objective of MIP-3, Objective of MIP-2}

min{Objective of MIP-3, Objective of MIP-2}
× 100 (54)

where Algorithm is MSTS or ALNS. Average Gap% is calculated as the average value of Gap%

for each type instance with 9 combinations of vtr, vdr, and β.

Compared to the objective values of MIP-3 and MIP2, MSTS and ALNS can not perform

better with the gap of 3.81% and 1.73% in the small instances |R| = 5; the gaps are 4.65% and

2.07% when |R| = 7; and the gaps are 4.87% and 2.62% when |R| = 10. ALNS outperforms MSTS

in the objective values because of the smaller gap to the optimal solutions. The computational

times reveal that MIP-2 runs the fastest when the instances are small and the advantage of

the heuristic in run time becomes more evident when the instance size becomes larger. When

21

Table 3: Single-Drone-Single-Truck Results on Small-Scale Instances with N = 10

Instance Obj CPU (seconds)

vtr vdr β MIP-3b MIP-2c MSTSd Gap% ALNS Gap% MIP-3b MIP-2c MSTSd ALNS

N10E20R5 1 1 1 359.30 359.30 367.23 2.21 363.23 1.09 4.85 2.96 11.24 3.64
2 289.67 289.67 299.32 3.33 290.62 0.33 8.25 4.90 10.63 5.72
3 252.07 252.07 258.62 2.60 254.34 0.90 4.79 1.28 9.42 6.32

1 2 1 358.22 358.22 371.99 3.84 365.32 1.98 4.58 0.96 4.63 11.23
2 256.43 256.43 268.32 4.64 263.23 2.65 8.59 2.73 10.42 7.32
3 196.29 196.29 204.23 4.05 200.42 2.11 9.12 4.36 9.98 5.43

2 1 1 184.26 184.26 191.32 3.83 188.42 2.26 2.81 1.59 12.42 7.43
2 165.14 165.14 173.32 4.96 168.23 1.87 2.22 2.17 9.43 5.73
3 158.54 158.54 166.21 4.84 162.34 2.40 3.23 1.86 8.99 6.43

Average 246.66 246.66 255.62 3.81 250.68 1.73 5.38 2.53 10.42 5.85

N10E20R7 1 1 1 462.89 462.89 483.53 4.46 469.32 1.39 37.42 7.92 5.35 16.32
2 353.17 353.17 372.73 5.54 363.24 2.85 230.80 75.74 33.42 17.42
3 314.13 314.13 326.42 3.91 319.40 1.68 133.66 42.36 79.54 20.32

1 2 1 461.53 461.53 477.32 3.42 470.34 1.91 59.58 12.92 43.43 16.23
2 319.89 319.89 335.43 4.86 326.43 2.04 497.73 126.24 63.43 34.23
3 237.08 237.08 250.32 5.58 242.53 2.30 317.73 180.17 74.52 43.42

2 1 1 235.27 235.27 245.32 4.27 239.43 1.77 13.81 5.16 12.43 10.32
2 200.25 200.25 210.45 5.09 204.32 2.03 15.70 5.16 10.53 14.23
3 193.24 193.24 202.34 4.71 198.43 2.69 18.65 4.39 7.34 15.32

Average 308.61 308.61 322.65 4.65 314.83 2.07 147.23 51.12 40.00 20.87

N10E20R10 1 1 1 594.61a 594.61a 607.34 2.14 603.24 1.45 1443.86 1066.15 295.34 125.34
2 439.66a 434.67a 466.34 7.29 452.32 4.06 3593.46 3144.67 222.75 220.32
3 393.13a 391.29a 436.23 11.48 412.32 5.37 2954.81 2049.52 252.39 198.52

1 2 1 591.06a 591.06a 603.30 2.07 599.42 1.41 1211.51 938.79 215.34 284.55
2 426.10a 394.15a 405.63 2.91 400.23 1.54 3600.00 3600.00 199.23 204.32
3 296.07a 284.21a 295.32 3.91 289.53 1.87 3504.08 2798.71 189.43 221.23

2 1 1 302.16a 301.05a 308.27 2.40 304.23 1.06 1546.43 918.86 285.35 198.43
2 258.35a 256.34a 270.43 5.50 263.23 2.69 1795.22 1008.30 263.23 174.23
3 244.98a 244.32a 259.32 6.14 254.34 4.10 1424.13 910.31 300.11 199.99

Average 394.01 387.97 405.80 4.87 397.65 2.62 2343.81 1827.58 247.02 202.99

a Not all 25 instances can be solved to optimality within the limited computational time of 3600s and the objective values are
not optimal.

b MIP formulation based on the 3-node transformation (Pearn et al., 1987)
c MIP formulation based on the 2-node transformation (Longo et al., 2006)
d MSTS (Luo et al., 2021) applied after the 3-node transformation

22

|R| = 10, the average run time of MSTS (247.02s) and ALNS (202.09s) are much less than those

of MIP. ALNS also outperforms MSTS in the run time.

Table 4: Single-Drone-Single-Truck Results on Small-Scale Instances with N = 15

Instance Obj CPU (seconds)

vtr vdr β MIP-3b MIP-2c MSTSd Gap% ALNS Gap% MIP-3b MIP-2c MSTSd ALNS

N15E30R5 1 1 1 446.71 446.71 454.23 1.68 450.43 0.83 3.44 1.50 12.43 6.47
2 362.33 362.33 371.01 2.40 367.63 1.46 11.74 7.22 10.42 10.34
3 303.35 303.35 314.42 3.65 309.34 1.98 5.32 4.00 9.45 5.63

1 2 1 446.42 446.42 457.52 2.49 452.32 1.32 3.50 1.89 7.64 4.63
2 340.98 340.98 348.32 2.15 344.52 1.04 16.63 10.29 8.63 7.83
3 253.60 253.60 265.32 4.62 259.32 2.25 12.51 7.51 11.42 6.58

2 1 1 225.79 225.79 233.43 3.39 228.32 1.12 2.77 1.47 10.24 3.21
2 205.07 205.07 211.89 3.32 207.53 1.20 4.28 3.19 14.25 7.42
3 190.00 190.00 200.21 5.37 193.24 1.70 2.91 2.22 11.42 5.43

Average 308.25 308.25 317.37 3.23 312.52 1.43 7.01 4.37 10.66 6.39

N15E30R7 1 1 1 537.89 537.89 553.42 2.89 549.75 2.21 45.05 9.11 45.33 18.32
2 424.33a 424.33 446.34 5.19 430.23 1.39 637.16 101.28 55.11 22.62
3 352.69 352.69 375.43 6.45 362.34 2.74 126.60 24.21 34.63 35.23

1 2 1 533.58 533.58 563.42 5.59 547.63 2.63 53.13 6.95 45.34 19.43
2 399.35a 399.35 420.53 5.30 410.23 2.72 963.13 221.13 39.64 35.64
3 282.83 282.83 297.34 5.13 289.53 2.37 741.21 125.79 26.71 55.47

2 1 1 271.76 271.76 290.34 6.84 278.43 2.45 22.17 4.20 36.23 16.43
2 239.13 239.13 250.43 4.73 244.42 2.21 72.57 16.91 53.53 20.43
3 225.23 225.23 235.43 4.53 231.52 2.79 57.28 13.49 49.35 19.64

Average 362.98 362.98 381.41 5.18 371.56 2.39 302.03 58.12 42.87 27.02

N15E30R10 1 1 1 665.25a 665.25a 683.24 2.70 680.34 2.27 1454.16 1203.22 320.43 290.31
2 502.19a 498.74a 520.34 4.33 511.42 2.54 3600.00 3371.43 295.35 300.23
3 435.41a 429.91a 450.32 4.75 440.23 2.40 2685.58 2422.05 340.52 243.52

1 2 1 660.18a 660.18a 678.42 2.76 675.73 2.35 1305.83 1300.98 299.43 210.24
2 481.46a 481.08a 515.62 5.00 510.23 3.90 3555.47 3600.00 287.77 199.53
3 341.40a 337.74a 370.53 5.34 359.34 2.16 3402.47 3412.68 310.45 178.46

2 1 1 335.85a 332.41a 359.64 6.91 348.53 3.60 1514.19 1341.94 296.34 176.34
2 278.89a 278.72a 286.43 2.77 285.47 2.42 1454.84 1520.01 301.53 193.32
3 262.62a 260.58a 270.31 3.73 268.34 2.98 1228.25 1015.98 296.43 200.52

Average 440.36 441.40 459.43 4.25 453.29 2.74 2263.24 2132.33 305.36 221.39

a Not all 25 instances can be solved optimally within the limited computational time of 3600s, and the objective values are
not optimal.

b MIP formulation is based on the VRP transformed from Pearn et al. (1987)
c MIP formulation is based on the VRP transformed from Longo et al. (2006)
d MSTS (Luo et al., 2021) applied after the 3-node transformation

The Single-Drone-Single-Truck results over the randomly generated data when N = 15 are

shown in Table 4. MIP-3 and MIP-2 solve the small instances well. The average objective value

gaps of ALNS 1.43%, 2.39%, and 2.74% show that ALNS can get an acceptable solution within

up to 10.34s, 55.47s, and 300.23s for |R| = 5, 7, 10, respectively. Between these two heuristics,

ALNS also runs faster and gets better solution than MSTS.

5.1.2 Large-Scale Instances

As shown in Tables 3 and 4, Gurobi cannot solve MIP-3 and MIP-2 to optimality in 3600s

and formulation can not get a feasible solution when the network is large. The two heuristic

methods, MSTS and ALNS, are tested on a set of Undirected Rural Postman Problem instances

(Corberán et al., 2021b). The characteristic of the instances UR500 is shown in Table 5.

23

Table 5: Characteristic of Undirected Rural Postman Problem UR500

Average Min Max

Nodes 446.0 298 499
Edges 1128.9 597 1526
Required Edges 35.3 1 99

0 500 1000 1500 2000 2500 3000 3500

Run time (second)

8500

9000

9500

10000

10500

11000

11500

12000

12500

ob
je
ct
iv
e
va
lu
e

URRP532 Convergenc Line

TS

ALNS

0 500 1000 1500 2000 2500 3000 3500

Run time (second)

8000

9000

10000

11000

12000

ob
je
ct
iv
e
va
lu
e

URRP535 Convergenc Line

TS

ALNS

Figure 5: Convergence Lines (The red cross means that the next solution is reconstructed based
on a new start in MSTS(Luo et al., 2021))

The comparison between MSTS and ALNS is evaluated in terms of objective value and run

time. Gap% in objective value and run-time are defined as follows:

Gap% in Objective Value =
Objective of MSTS−Objective of ALNS

Objective of ALNS
× 100 (55)

Gap% in Run Time =
Run time of MSTS− Run time of ALNS

Run time of ALNS
× 100 (56)

The average Gap% in objective value and run-time are calculated as the average value of Gap%

in objectives and run times for each type instance with 9 combinations of vtr, vdr, and β.

The results of four URPP500 instances are summarized in Table 6. The run time is limited

to 1200 seconds for both MSTS and ALNS. ALNS can get a better solution for all instances

with an average gap of 1.99%, 4.16%, 1.36%, and 3.54%.

Moreover, convergence lines for URPP532 and URPP535 are illustrated in Figure 5. Tabu

search tries to jump into the further neighborhood by generating a new solution based on a new

start solution. Because ALNS adopts a further-neighborhood search rule such as worst route

removal, it can search for a solution in the further neighborhood, and the search rule of ALNS is

more effective. Therefore, ALNS converges faster than MSTS.

5.2 One Truck and Multiple Drones

5.2.1 Small-Scale Instances

Both ALNS and MSTS can solve the case when one truck and multiple drones traverse all

required edges jointly. The tests are done on the randomly generated data with N = 10 and 15.

24

Table 6: Single-Drone-Single-Truck Objective Values on Large-Scale Instances

MSTS ALNS Gap% MSTS ALNS Gap%

vtr vdr β UR532 UR535

1 1 1 10342 10034 3.07 12042 11592 3.88
2 10225 9987 2.38 11942 11561 3.30
3 9998 9698 3.09 10093 9899 1.96

1 2 1 8843 8733 1.26 8234 7953 3.53
2 8632 8529 1.21 8102 7801 3.86
3 8452 8321 1.57 7842 7504 4.50

2 1 1 7201 7033 2.40 7293 6903 5.65
2 6992 6843 2.18 7102 6723 5.64
3 6703 6653 0.75 6983 6643 5.12

Average 8599 8426 1.99 8848 8301 4.16

vtr vdr β UR537 UR542

1 1 1 11023 10932 0.83 11423 11242 1.61
2 10294 10200 0.92 11232 10923 2.83
3 10125 10101 0.24 11001 10842 1.47

1 2 1 10023 9994 0.29 10532 10424 1.04
2 9923 9530 4.12 10423 10211 2.08
3 9380 9305 0.81 10232 10112 1.19

2 1 1 8990 8942 0.54 10032 9123 9.96
2 9123 8816 3.48 9834 8942 9.98
3 8824 8736 1.01 8988 8834 1.74

Average 9745 9617 1.36 10411 10073 3.54

25

Table 7: Two-Drones-One-Truck Results on Small-Scale Instances with N = 10

Instance Obj CPU (seconds)

vtr vdr β MSTS ALNS Gap% MSTS ALNS Gap%

N10E20R5 1 1 1 271.26 263.23 3.05 9.87 3.55 178.03
2 222.32 216.62 2.63 12.01 6.07 97.86
3 198.62 192.34 3.27 7.4 4.65 59.14

1 2 1 280.5 275.32 1.88 13.1 4.47 193.06
2 201.62 195.23 3.27 11.55 6.11 89.03
3 142.67 138.42 3.07 10.83 5.07 113.61

2 1 1 140.42 136.42 2.93 12.21 9.36 30.45
2 114.78 110.54 3.84 8.37 5.12 63.48
3 105.21 101.32 3.84 9.44 5.11 84.74

Average 186.38 181.05 3.09 10.53 5.50 101.04

N10E20R7 1 1 1 418.34 409.56 2.14 33.38 17.69 88.69
2 311.91 308.22 1.20 37.28 14.08 164.77
3 234.7 229.68 2.19 80.68 15.62 416.52

1 2 1 381.38 373.75 2.04 45.02 22.11 103.62
2 259.99 253.81 2.43 64.27 39.26 63.70
3 170.71 163.95 4.12 75.80 48.2 57.26

2 1 1 152.8 148.61 2.82 36.51 13.5 170.44
2 162.5 154.3 5.31 48.65 13.99 247.75
3 126.74 121.64 4.19 28.56 20.5 39.32

Average 246.56 240.39 2.94 50.02 22.77 150.23

N10E20R10 1 1 1 517.34 508.74 1.69 311.24 109.74 183.62
2 488.42 471.12 3.67 235.85 222.72 5.90
3 436.23 422.74 3.19 237.79 187.22 27.01

1 2 1 545.42 536.02 1.75 230.34 207.35 11.09
2 414.23 404.23 2.47 281.53 186.42 51.02
3 335.32 324.34 3.39 286.63 234.13 22.42

2 1 1 214.23 205.03 4.49 265.55 183.73 44.53
2 194.22 182.13 6.64 253.03 178.93 41.41
3 188.43 178.94 5.30 295.01 196.39 50.22

Average 370.43 359.25 3.62 266.33 189.63 48.58

26

Table 8: Two-Drones-One-Truck Results on Small-Scale Instances with N = 15

Instance Obj CPU (seconds)

vtr vdr β MSTS ALNS Gap% MSTS ALNS Gap%

N15E30R5 1 1 1 327.83 312.33 4.96 14.93 7.97 87.33
2 301.23 299.93 0.43 18.12 8.74 107.32
3 284.32 269.74 5.41 11.85 8.53 38.92

1 2 1 379.82 351.82 7.96 7.94 4.23 87.71
2 309.72 299.22 3.51 11.63 6.73 72.81
3 258.42 254.23 1.65 14.32 6.28 128.03

2 1 1 248.83 239.32 3.97 12.24 4.61 165.51
2 201.49 195.93 2.84 15.25 7.82 95.01
3 189.81 185.14 2.52 11.32 4.33 161.43

Average 277.94 267.52 3.69 13.07 6.58 104.90

N15E30R7 1 1 1 418.42 402.65 3.92 79.43 16.72 375.06
2 392.42 385.53 1.79 46.51 24.82 87.39
3 379.34 375.23 1.10 66.23 34.73 90.70

1 2 1 413.92 396.23 4.46 55.24 18.93 191.81
2 394.23 374.11 5.38 50.64 32.94 53.73
3 372.32 345.34 7.81 65.31 53.67 21.69

2 1 1 179.24 163.23 9.81 27.23 17.33 57.13
2 139.53 130.92 6.58 87.63 23.33 275.61
3 130.23 126.72 2.77 25.75 19.14 34.54

Average 313.29 299.99 4.85 56.00 26.85 131.96

N15E30R10 1 1 1 524.64 515.44 1.78 335.53 308.53 8.75
2 396.64 381.52 3.96 314.25 224.12 40.22
3 343.23 333.13 3.03 323.62 226.12 43.12

1 2 1 583.62 574.23 1.64 289.13 203.80 41.87
2 395.23 383.43 3.08 296.37 170.21 74.12
3 240.32 227.54 5.62 337.65 178.37 89.29

2 1 1 218.34 213.33 2.35 315.64 225.35 40.07
2 193.23 182.77 5.72 316.33 236.30 33.87
3 159.32 145.34 9.62 310.43 222.19 39.71

Average 339.40 328.53 4.09 315.44 221.66 45.67

27

The results are summarized in Tables 7 and 8. ALNS gets better objective values with an

average gap of 3.09%, 2.94%, and 3.62%. The average run time gaps are 101.04%, 150.23%, and

48.58% when N=10. When N = 15, the average objective gaps are 3.69%, 4.85%, and 4.09%.

The average run time gaps are 104.90%, 131.96%, and 45.67%. Since both ALNS and MSTS are

limited in running time of 1200s, the gap between them shows that ALNS performs better than

MSTS for all randomly generated small-scale data.

5.2.2 Large-Scale Instances

MSTS and ALNS methods also solve four URPP500 instances of large scale in the case

when there are two drones and one truck. Both methods use the stop criterion as the maximum

iteration number of 5000 and a non-improving iteration number of 1000. The objective values

are shown in Table 9. Average gaps are 3.09%, 2.83%, 2.65% and 4.60% for instances UR532,

UR535, UR537 and UR542, respectively. ALNS enables us to get a better solution than MSTS

in the case of multiple drones and one truck.

Table 9: Two-Drones-One-Truck Objective Values on Large-Scale Instances

MSTS ALNS Gap% MSTS ALNS Gap%

vtr vdr β UR532 UR535

1 1 1 6894.67 6689.33 3.07 7528.00 7461.33 0.89
2 6816.67 6658.00 2.38 7961.33 7728.37 3.01
3 6665.33 6465.33 3.09 6728.67 6599.33 1.96

1 2 1 5171.33 5017.20 3.07 4760.03 4746.15 0.29
2 5006.67 4889.00 2.41 4471.13 4355.67 2.65
3 5034.67 4854.33 3.71 4567.00 4500.67 1.47

2 1 1 5712.67 5507.33 3.73 5793.53 5478.19 5.76
2 5476.33 5265.00 4.01 5384.67 5092.77 5.73
3 5059.67 4945.47 2.31 5561.65 5365.67 3.65

Average 5759.78 5587.89 3.09 5861.78 5703.13 2.83

vtr vdr β UR537 UR542

1 1 1 7348.67 7188.00 2.24 7615.33 7494.67 1.61
2 6862.67 6789.32 1.08 7488.23 7282.76 2.82
3 6850.00 6701.22 2.22 7334.16 7228.12 1.47

1 2 1 6315.00 6009.67 5.08 6294.33 6001.11 4.89
2 6012.15 5836.63 3.01 6298.67 5938.76 6.06
3 5601.37 5545.32 1.01 6088.33 5757.14 5.75

2 1 1 6725.98 6676.65 0.74 7517.00 6866.34 9.48
2 6700.01 6668.34 0.47 7138.00 6728.34 6.09
3 6854.67 6347.10 8.00 6912.65 6697.33 3.21

Average 6585.61 6418.03 2.65 6965.19 6666.06 4.60

5.3 Analysis on Speed and Drone Range

The numbers of instances solved to optimality are given in Table 10. There are 25 instances

of each type. All instances are solved within the limited computational time of 3600 seconds.

28

Figure 6: Percentage of Small-Scale Instances with |R| = 10 Solved to Optimality

When |R| = 5, all 25 instances of each type can be solved optimally. When |R| = 7, MIP-3 and

MIP-2 can not obtain the optimal solution in some cases when the truck speed vtr = 1, the

drone speed vdr = 2, range parameter β = 2 or 3. As the increase in the number of required

edges |R| = 10, the property of the problem becomes obvious. The problem is simpler to solve

when the truck is faster than the drone (vtr = 2, vdr = 1) because the truck tends to service the

most edges, and the drone gets onboard the truck in the most time. Then, the problem is harder

to solve when the speeds are the same (vtr = vdr = 1) because it leads to the situation that it

is equivalent to a 2-truck ARP with one truck having a length constraint. It is the hardest to

solve when the drone is faster than the truck (vtr = 1, vdr = 2). Because the faster drone can

traverse more required edges and benefits in reducing the completion time.

The different maximum drone ranges also affect the complexity of the problem. For different

values of β = 1, 2, 3, the average percentages of instances solved to optimality are 72.67%, 25.33%,

37.33% by MIP-3 and are 82.00%, 36.67% and 56.00% by MIP-2, respectively. The maximum

flight range is short when β = 1, so the drone cannot traverse some edges. As the maximum

range increases to β = 2, there are more feasible solutions where the drone can service some

edges. If the maximum range becomes very large, the problem is equivalent to a 2-truck ARP

with the trucks having different speeds. That becomes easier to solve.

The percentages of optimal solutions over the randomly generated small-scale instances

with 10 required edges are drawn in Figure 6. Figure 7 shows the average run times of ALNS

over large-scale instances UR500. The darker the color is, the harder the problem is to solve.

Thus, the worst case happens when vtr/vdr = 0.5 and the range parameter β = 2. Because the

minimum makespan occurs in the situation where there is no or less waiting time at the drone’s

landing combined node.

5.4 Analysis on Robustness of ALNS versus MSTS

The robustness of a heuristic means how much the solutions vary if being repeated several

times in the same instance. The robustness of a method is expressed as the standard deviation.

The randomly generated instances N15E30-R5, R7, and R10 are used to evaluate the robustness.

29

Table 10: Number of Small-Scale Instances Solved to Optimality

opt # opt

vtr vdr β Instance MIP-3 MIP-2 Instance MIP-3 MIP-2

1 1 1 N10E20R5 25/25 25/25 N15E30R5 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

1 2 1 25/25 25/25 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

2 1 1 25/25 25/25 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

1 1 1 N10E20R7 25/25 25/25 N15E30R7 25/25 25/25
2 25/25 25/25 24/25 25/25
3 25/25 25/25 25/25 25/25

1 2 1 25/25 25/25 25/25 25/25
2 24/25 25/25 22/25 25/25
3 24/25 24/25 25/25 25/25

2 1 1 25/25 25/25 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

1 1 1 N10E20R10 18/25 20/25 N15E30R10 18/25 19/25
2 1/25 6/25 3/25 8/25
3 6/25 15/25 10/25 14/25

1 2 1 19/25 21/25 20/25 20/25
2 0/25 0/25 1/25 1/25
3 2/25 9/25 2/25 3/25

2 1 1 17/25 22/25 17/25 21/25
2 16/25 20/25 17/25 20/25
3 17/25 21/25 19/25 22/25

Figure 7: Average Run Time of ALNS over Large-Scale Instances UR500

30

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Instance Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
ta
n
d
ar
d
D
ev
ia
ti
on

0.15

0.24

1.24

2.01

3.13

3.82R-edges 5 R-edges 7 R-edges 10

Standard Deviation over Randomly Generated Data N15E30

TS

ALNS

Figure 8: Standard Deviation of Makespan by ALNS and MSTS over Small-Scale Instances

Each instance is repeated 10 times, and the standard deviation is calculated from the 10 repeated

solutions. The standard deviations of ALNS and MSTS are illustrated in Figure 8. For all

instances, ALNS has less standard deviation than MSTS. With the increasing number of required

edges, the values of Std increase. The less the standard deviation is, the more stable the method

is. We observe that ALNS has better robustness than MSTS.

6 Concluding remarks

This paper considers the Drone-Truck Arc Routing Problem (DT-ARP). The drone and the

truck cooperatively serve all required edges at least once. Since the drone can fly off of the road

network, the DT-ARP extends the traditional ARP. With a limited battery capacity, the drone

needs to fly from and to vehicles for a replacement of the battery. The key challenge is how

to determine the truck and drone route to minimize the completion time. In order to obtain

optimal solutions, we transform arc routing problems into node routing problems with two

transformation methods and formulate mixed-integer programming models. The experiments

reveal that MIP formulations can solve the problem well for the small-size network. However, for

larger networks with more than 10 required edges, an efficient and effective heuristic is necessary.

A heuristic method based on Adaptive Large Neighborhood Search is proposed to solve the

DT-ARP. The performance of ALNS is evaluated using small-size randomly generated ARP

instances and large-size undirected rural postman problem instances.

We can also use an existing method for the Traveling Salesman Problem with Drones (TSP-D)

to solve DT-ARP. After applying a transformation, we can obtain an equivalent TSP-D with

multi-visits, which may be solved by a multi-start tabu-search (MSTS). We found that ALNS

outperforms MSTS both in the solution quality and the computational time.

Further analysis of the truck/drone speed and maximum drone flight range shows that the

31

problem is hard to solve when the maximum flight range is double the average edges’ distances,

and the drone is twice as fast as the truck. The robustness of ALNS is also better than Tabu

Search by comparing the standard deviation from the repeated solved solutions.

As for directions of future research, the heuristic method, Adaptive Large Neighborhood

Search, may be improved, such as by using strong initialization or by some other destroy and

repair methods. The future work could extend to the DT-ARP with multiple trucks and multiple

drones onboard per truck.

Acknowledgment The first author’s research was supported by the start-up fund from

Zhejiang Gongshang University (Project No.1310XJ2323030). The second author’s research was

supported by the U.S. National Science Foundation (NSF) grant with Award No. 2032460. The

third author’s research was supported by the Korean government (MSIT) through the National

Research Foundation of Korea (NRF) grant RS-2023-00259550.

References

Agatz, N., P. Bouman, M. Schmidt. 2018. Optimization approaches for the traveling salesman

problem with drone. Transportation Science 52(4) 965–981.

Ahirwar, S., R. Swarnkar, S. Bhukya, G. Namwade. 2019. Application of drone in agriculture.

International Journal of Current Microbiology and Applied Sciences 8(1) 2500–2505.

Altin, I., A. Sipahioglu. 2024. Drone arc routing problems and metaheuristic solution approach.

Drones 8(8) 373.

Amorosi, L., J. Puerto, C. Valverde. 2021. Coordinating drones with mothership vehicles: The

mothership and drone routing problem with graphs. Computers & Operations Research 136

105445.

Amorosi, L., J. Puerto, C. Valverde. 2023. A multiple-drone arc routing and mothership

coordination problem. Computers & Operations Research 159 106322.

Bogyrbayeva, A., T. Yoon, H. Ko, S. Lim, H. Yun, C. Kwon. 2023. A deep reinforcement learning

approach for solving the traveling salesman problem with drone. Transportation Research

Part C: Emerging Technologies 148 103981.

Boysen, N., D. Briskorn, S. Fedtke, S. Schwerdfeger. 2018. Drone delivery from trucks: Drone

scheduling for given truck routes. Networks 72(4) 506–527.

Campbell, J. F., Á. Corberán, I. Plana, J. M. Sanchis, P. Segura. 2021. Solving the length

constrained k-drones rural postman problem. European Journal of Operational Research

292(1) 60–72.

Campbell, J. F., Á. Corberán, I. Plana, J. M. Sanchis. 2018. Drone arc routing problems.

Networks 72(4) 543–559.

32

Chow, J. Y. 2016. Dynamic UAV-based traffic monitoring under uncertainty as a stochastic

arc-inventory routing policy. International Journal of Transportation Science and Technology

5(3) 167–185.

Chung, S. H., B. Sah, J. Lee. 2020. Optimization for drone and drone-truck combined operations:

A review of the state of the art and future directions. Computers & Operations Research 123

105004.

Corberán, Á., R. Eglese, G. Hasle, I. Plana, J. M. Sanchis. 2021a. Arc routing problems: A

review of the past, present, and future. Networks 77(1) 88–115.

Corberán, Á., G. Laporte. 2015. Arc routing: problems, methods, and applications. SIAM.

Corberán, Á., I. Plana, M. Reula, J. M. Sanchis. 2021b. Arc routing problems: Data instances.

https://www.uv.es/corberan/instancias.htm. Last updated: May 2021.

Corberán, T., I. Plana, J. M. Sanchis. 2025. The min max multi-trip drone location arc routing

problem. Computers & Operations Research 174 106894.

De Maio, A., D. Laganà, R. Musmanno, F. Vocaturo. 2021. Arc routing under uncertainty:

Introduction and literature review. Computers & Operations Research 135 105442.

Di Puglia Pugliese, L., G. Macrina, F. Guerriero. 2021. Trucks and drones cooperation in the

last-mile delivery process. Networks 78(4) 371–399.

Dille, M., S. Singh. 2013. Efficient aerial coverage search in road networks. AIAA Guidance,

Navigation, and Control (GNC) Conference. 5094.

Eiselt, H. A., M. Gendreau, G. Laporte. 1995a. Arc routing problems, part i: The chinese

postman problem. Operations Research 43(2) 231–242.

Eiselt, H. A., M. Gendreau, G. Laporte. 1995b. Arc routing problems, part ii: The rural postman

problem. Operations Research 43(3) 399–414.

Engberts, B., E. Gillissen. 2016. Policing from above: Drone use by the police. The future of

drone use. Springer, 93–113.

Ghiasvand, M. R., D. Rahmani, M. Moshref-Javadi. 2024. Data-driven robust optimization for a

multi-trip truck-drone routing problem. Expert Systems with Applications 241 122485.

Golden, B. L., R. T. Wong. 1981. Capacitated arc routing problems. Networks 11(3) 305–315.

Ha, Q. M., Y. Deville, Q. D. Pham, M. H. Hà. 2020. A hybrid genetic algorithm for the traveling

salesman problem with drone. Journal of Heuristics 26 219–247.

Jiang, J., Y. Dai, F. Yang, Z. Ma. 2024. A multi-visit flexible-docking vehicle routing problem

with drones for simultaneous pickup and delivery services. European Journal of Operational

Research 312(1) 125–137.

33

https://www.uv.es/corberan/instancias.htm

Kuo, R., S.-H. Lu, P.-Y. Lai, S. T. W. Mara. 2022. Vehicle routing problem with drones

considering time windows. Expert Systems with Applications 191 116264.

Laporte, G., R. Musmanno, F. Vocaturo. 2010. An adaptive large neighbourhood search heuristic

for the capacitated arc-routing problem with stochastic demands. Transportation Science

44(1) 125–135.

Lenstra, J. K., A. R. Kan. 1976. On general routing problems. Networks 6(3) 273–280.

Li, H., J. Chen, F. Wang, Y. Zhao. 2022. Truck and drone routing problem with synchronization

on arcs. Naval Research Logistics (NRL) 69(6) 884–901.

Li, M., L. Zhen, S. Wang, W. Lv, X. Qu. 2018. Unmanned aerial vehicle scheduling problem for

traffic monitoring. Computers & Industrial Engineering 122 15–23.

Longo, H., M. P. De Aragao, E. Uchoa. 2006. Solving capacitated arc routing problems using a

transformation to the cvrp. Computers & Operations Research 33(6) 1823–1837.

Luo, Z., R. Gu, M. Poon, Z. Liu, A. Lim. 2022. A last-mile drone-assisted one-to-one pickup and

delivery problem with multi-visit drone trips. Computers & Operations Research 148 106015.

Luo, Z., M. Poon, Z. Zhang, Z. Liu, A. Lim. 2021. The multi-visit traveling salesman problem

with multi-drones. Transportation Research Part C: Emerging Technologies 128 103172.

Macrina, G., L. D. P. Pugliese, F. Guerriero, G. Laporte. 2020. Drone-aided routing: A literature

review. Transportation Research Part C: Emerging Technologies 120 102762.

Mogili, U. R., B. Deepak. 2018. Review on application of drone systems in precision agriculture.

Procedia Computer Science 133 502–509.

Momeni, M., H. Soleimani, S. Shahparvari, B. Afshar-Nadjafi. 2022. Coordinated routing system

for fire detection by patrolling trucks with drones. International Journal of Disaster Risk

Reduction 73 102859.

Monroy-Licht, M., C. A. Amaya, A. Langevin. 2014. The rural postman problem with time

windows. Networks 64(3) 169–180.

Monroy-Licht, M., C. A. Amaya, A. Langevin. 2017. Adaptive large neighborhood search

algorithm for the rural postman problem with time windows. Networks 70(1) 44–59.

Morandi, N., R. Leus, J. Matuschke, H. Yaman. 2023. The traveling salesman problem with

drones: The benefits of retraversing the arcs. Transportation Science 57(5) 1340–1358.

Moshref-Javadi, M., A. Hemmati, M. Winkenbach. 2020. A truck and drones model for last-mile

delivery: A mathematical model and heuristic approach. Applied Mathematical Modelling 80

290–318.

Murray, C. C., A. G. Chu. 2015. The flying sidekick traveling salesman problem: Optimization

of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies 54

86–109.

34

Oh, H., S. Kim, A. Tsourdos, B. A. White. 2014. Coordinated road-network search route

planning by a team of UAVs. International Journal of Systems Science 45(5) 825–840.

Oh, H., H. Shin, A. Tsourdos, B. White, P. Silson. 2011. Coordinated road network search for

multiple UAVs using dubins path. Advances in Aerospace Guidance, Navigation and Control .

Springer, 55–65.

Otto, A., N. Agatz, J. Campbell, B. Golden, E. Pesch. 2018. Optimization approaches for civil

applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 72(4)

411–458.

Pearn, W.-L., A. Assad, B. L. Golden. 1987. Transforming arc routing into node routing problems.

Computers & Operations Research 14(4) 285–288.

Petitprez, E., F. Georges, N. Raballand, S. Bertrand. 2021. Deployment optimization of a

fleet of drones for routine inspection of networks of linear infrastructures. 2021 International

Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 303–310.

Pisinger, D., S. Ropke. 2019. Large Neighborhood Search. Springer International Publishing,

Cham, 99–127. doi: 10.1007/978-3-319-91086-4 4. URL https://doi.org/10.1007/978-3-

319-91086-4_4.

Poikonen, S., B. Golden. 2020. Multi-visit drone routing problem. Computers & Operations

Research 113 104802.

Poikonen, S., B. Golden, E. A. Wasil. 2019. A branch-and-bound approach to the traveling

salesman problem with a drone. INFORMS Journal on Computing 31(2) 335–346.

Rabta, B., C. Wankmüller, G. Reiner. 2018. A drone fleet model for last-mile distribution in

disaster relief operations. International Journal of Disaster Risk Reduction 28 107–112.

Rakha, T., A. Gorodetsky. 2018. Review of unmanned aerial system (uas) applications in the built

environment: Towards automated building inspection procedures using drones. Automation

in Construction 93 252–264.

Rave, A., P. Fontaine, H. Kuhn. 2023. Drone location and vehicle fleet planning with trucks and

aerial drones. European Journal of Operational Research 308(1) 113–130.

Roberti, R., M. Ruthmair. 2021. Exact methods for the traveling salesman problem with drone.

Transportation Science 55(2) 315–335.

Ropke, S., D. Pisinger. 2006. An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation Science 40(4) 455–472.

Sipahioglu, A., G. Kirlik, O. Parlaktuna, A. Yazici. 2010. Energy constrained multi-robot

sensor-based coverage path planning using capacitated arc routing approach. Robotics and

Autonomous Systems 58(5) 529–538.

35

https://doi.org/10.1007/978-3-319-91086-4_4
https://doi.org/10.1007/978-3-319-91086-4_4

Sun, W., Z. Luo, X. Hu, W. Pedrycz, J. Shi. 2024. An improved variable neighborhood search

algorithm embedded temporal and spatial synchronization for vehicle and drone cooperative

routing problem with pre-reconnaissance. Swarm and Evolutionary Computation 91 101699.

Tamke, F., U. Buscher. 2021. A branch-and-cut algorithm for the vehicle routing problem with

drones. Transportation Research Part B: Methodological 144 174–203.

Wang, D., P. Hu, J. Du, P. Zhou, T. Deng, M. Hu. 2019. Routing and scheduling for hybrid

truck-drone collaborative parcel delivery with independent and truck-carried drones. IEEE

Internet of Things Journal 6(6) 10483–10495.

Wang, Z., J.-B. Sheu. 2019. Vehicle routing problem with drones. Transportation Research Part

B: Methodological 122 350–364.

Wu, G., K. Zhao, J. Cheng, M. Ma. 2022. A coordinated vehicle–drone arc routing approach

based on improved adaptive large neighborhood search. Sensors 22(10) 3702.

Xia, Y., W. Zeng, C. Zhang, H. Yang. 2023. A branch-and-price-and-cut algorithm for the vehicle

routing problem with load-dependent drones. Transportation Research Part B: Methodological

171 80–110.

Xu, B., K. Zhao, Q. Luo, G. Wu, W. Pedrycz. 2023. A gv-drone arc routing approach for urban

traffic patrol by coordinating a ground vehicle and multiple drones. Swarm and Evolutionary

Computation 77 101246.

Xue, G., Y. Li, Z. Wang. 2023. Vessel-uav collaborative optimization for the offshore oil and gas

pipelines inspection. International Journal of Fuzzy Systems 25(1) 382–394.

Yu, L., E. Yang, P. Ren, C. Luo, G. Dobie, D. Gu, X. Yan. 2019. Inspection robots in oil and gas

industry: a review of current solutions and future trends. 2019 25th International Conference

on Automation and Computing (ICAC). IEEE, 1–6.

Zandieh, F., S. F. Ghannadpour, M. M. Mazdeh. 2024. New integrated routing and surveillance

model with drones and charging station considerations. European Journal of Operational

Research 313(2) 527–547.

Zeng, F., Z. Chen, J.-P. Clarke, D. Goldsman. 2022. Nested vehicle routing problem: Optimizing

drone-truck surveillance operations. Transportation Research Part C: Emerging Technologies

139 103645.

Zhou, H., H. Qin, C. Cheng, L.-M. Rousseau. 2023. An exact algorithm for the two-echelon

vehicle routing problem with drones. Transportation Research Part B: Methodological 168

124–150.

36

