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Abstract—In the last several years, the growth in household
solar generation and the lack of success of the feed-in-tariff
programs have led to the rise of peer-to-peer (P2P) energy
trading schemes among prosumers. However, a change that
has started more recently is the growth of smart homes and
businesses, of which loads are IoT controlled and are supported
by advanced metering infrastructure (AMI). This has created
a new opportunity for smart homes and businesses to form
aggregations (coalitions) and participate in cooperative load
management and energy trading. Unlike energy trading among
individual prosumers in most P2P networks, a new trading
opportunity that is emerging is between aggregations of peers
of smart homes and businesses and electric vehicles (EVs). In
this paper, we consider one such trading scenario between two
aggregations, of which one has smart homes and businesses
with load consuming entities (not prosumers), and the other has
EVs only. The aggregation with smart homes and businesses
derive cost reduction through optimal load scheduling based
on load preferences, market-based pricing of electricity, and
opportunity to trade (buy) energy from the aggregation with
EVs. Whereas the aggregation of EVs optimally schedules
charging to meet EV needs and uses stored energy to trade
(sell). A generalized Nash bargaining model is developed for
obtaining optimal trading strategies in the form of plain or
swing option contracts. A sample numerical problem scenario
is used to show that suitable contracts can be derived that
allow aggregations of peers to mutually benefit from energy
trading. It is shown that there exist numerous alternative
optimal solutions to the Nash bargaining problem. The solutions
comprise different combinations of strike price and option
value, for all of which savings to the parties remain constant.
For plain option, with a contract quantity of 1 MWh, the total
savings generated is equivalent to the average price of 1.62
MWh of electricity. Interactions among contract parameters
(such as strike price, option value, and option quantity) and
the relative market power of the aggregations are also examined.

Keywords: Aggregation of peers, peer-to-peer energy trading,
option contract, Nash bargaining solution

I. INTRODUCTION

Increasing adoption of internet-enabled load control and the
move towards real-time pricing of electricity are creating op-
portunities for end-use consumers (peers) to form aggregations
[17]. These aggregations are intended to reduce cost of the
participating peers by optimally scheduling their loads and
by trading energy. As these aggregations pay time varying
market prices set by the system operator, strategies for load
scheduling and energy trading depend on the hourly market
price variations, consumption preferences of the participants,
and any other prevailing network constraints. An aggregation
can comprise a variety of participating peers including smart

households and businesses, collection of electric vehicles,
battery banks, wind mills, and solar farms. Depending on their
composition, aggregations may have different characteristics,
such as load consuming only, load consuming with storage,
storage only, load consuming with storage and generation,
among others. These characteristics in turn guide their cost
minimization and trading approaches. For example, an aggre-
gation of only load consuming entities (ALCEs) will optimally
schedule its deferrable loads when the market prices are
lower. Also, to reduce the risk from spikes in market prices,
ALCEs may enter into contracts for electricity trading with
aggregations having storage capacities. Such trading contracts
can be drafted as option contracts. In this paper, we consider
energy trading between two aggregations, one comprising
smart load consuming entities only (ALCE) and the other is
an aggregation of EVs (AEV).

For the energy trading contract to be fair to both, we develop
a Nash bargaining model using the operational strategies of
both ALCE and AEV. We limit our model to two aggregations
in order to get better insight into their interactions. However,
our model can be used to obtain optimal contracts for the
general case in which an ALCE may be interested to bargain
with more than one AEVs or vice versa. This can be achieved
by considering a finite sequence of bilateral bargaining sessions
in which two players bargain for a partial agreement. The
effectiveness of this sequential approach was studied in [32]
and it was shown that for any given bargaining strategy the
solution obtained is a subgame perfect equilibrium. The Nash
bargaining model presented here can be used as a bargaining
strategy in the sequential approach.

We first develop cost minimizing operational models for
ALCE and AEV. We consider that both aggregations buy
needed electricity from the grid (paying the market price) and
trade electricity using option contracts. The operational models
are then used to develop a generalized Nash bargaining solution
(GNBS) approach for designing option contracts. The approach
also incorporates relative market powers of the aggregations.
The ALCE is considered to have two types of loads, fixed and
deferrable, of which only the deferrable load schedules are
optimized. Deferrable loads in turn are considered to be of two
types: shiftable and adjustable. Shiftable loads are scheduled
at any time within their respective predefined time windows.
Whereas for adjustable loads, both the time of operation and
the level of power consumption can be altered while satisfying
their total power requirement within a predefined time window.
The EVs in the AEV are considered heterogeneous with



2

different battery sizes, arrival and departure times, maximum
and minimum allowable state of charge (SOC), and maximum
rates of charge/discharge. The price of electricity is consider
to be available to ALCE and AEV at the start of each time
interval of a day (say, an hour). Price is assumed to vary with
time based on demand, supply, and network conditions and is
considered as an exogenous input to our model.

It is assumed that ALCE and AEV predict the time-varying
electricity prices and optimize their daily operations. The
ALCE’s operational model is formulated as a mixed integer
program that schedules all loads of the day to minimize cost.
Electricity consumed by the ALCE loads is drawn from both
the network (based on the price) as well as from the AEV
(based on the contract). The AEV consumes electricity from
the network to meet the SOC requirements of the EV owners
and also to store excess energy in the batteries to trade with
ALCE. The operational model of AEV is formulated as a
mixed integer program. It considers both cost and revenue.
The cost is the amount paid to the grid for electricity, and
the revenue comprises the payments it receives from the EV
owners and the ALCE. The AEV is also considered to pay
overcharge and undercharge penalties to the EV owners. These
penalties are incurred if at the time of departure from the
parking-lot, the SOC of an EV battery is either above or below
the charge level desired by the EV owner. A schematic of
the interactions between the ALCE, AEV, and the network
is presented in Figure 1. We consider both plain and swing
option contracts between ALCE and AEV. An option contract
is defined by its time window, strike price, option quantity,
and option value. The use of financial instruments like option
contracts is common in trading electricity between market
constituents (see for example [29, 34]). However, the design
of such instruments in the context of various forms of energy
trading among peers is still a growing research area.

AGGREGATION OF LOAD 
CONSUMING ENTITIES (ALCE)

"((3&("5*0/�0'�
ELECTRIC VEHICLE� ("EV)

l

ENERGY
INFORMATION

OPTION 
CONTRACT

MAIN POWER GRID

Fig. 1: Energy and information flow between ALCE and AEV

A. Contributions of this paper

Peer-to-peer trading in a power network is a well examined
topic, where peers are commonly assumed to be prosumers
(households with generation and storage capabilities). However,
growth of IoT and advanced metering infrastructure has lead
to the rise of a set of newly empowered peers, namely smart
homes and businesses and EVs. In our previous work [17], we
have shown how these peers are now able to form coalitions and

reduce their operational cost by engaging in demand response,
in markets with hourly price variations and price spikes. In this
paper, we demonstrate that, in markets with price variations and
spikes, aggregations formed by these peers can also effectively
engage in energy trading and derive financial benefits that are
fair to all. This is demonstrated by developing a generalized
Nash bargaining solution (GNBS) model for obtaining trading
contract between two aggregations and implementing it on a
sample problem. The operational optimization models for the
aggregations that we have formulated as input for the GNBS
model are also novel in how they schedule load consumption
and plan for energy sharing. Our contributions also include
a computational strategy where instead of solving the GNBS
model as one single nonlinear mixed integer program, we
separately solve the operational models and use their results
to solve GNBS model and obtain the contract parameters.

B. Related literature

Peer-to-peer trading in power markets is an ongoing area of
research. Excellent reviews of the various aspects of prosumer-
based peer-to-peer energy trading can be found in [34, 35].
However, effective mechanisms to schedule load and trade
electricity in P2P networks are still in their early stages of
development [16, 35]. The concept of nonprosumer peers
forming coalitions to trade energy among themselves, as
considered in this paper, is relatively new. One such mechanism
has recently been modeled in [17], which demonstrates how an
aggregation of peers comprising smart homes and businesses
and EVs can generate cost savings and share it in a fair
and equitable manner among the participating peers. The
aforementioned paper considers a number of practical features
of the power market, including modeling of price and demand
data, network constraints, day ahead commitment, and real
time price spikes. In what follows, we review some of the
relevant literature in three categories: P2P trading mechanisms,
use of options contract in power markets, and EV based P2P
trading.

Bilateral contract networks as a new scalable market design
for P2P energy trading is presented in [20]. It considers both
real-time and forward markets for energy trading contracts
between generators and consumers with fixed and deferrable
loads and/or renewable sources. They show that utility-
maximizing preferences for these contracts satisfy conditions
essential for establishing the existence of a stable outcome
from which agents do not wish to mutually deviate. Forward
and real-time energy contracts were also considered in [40].
A coalition formation game framework is proposed in [33],
to help prosumers decide whether or not it is profitable
to bid its battery capacity in the P2P market for energy
trading. The proposed mechanism allows prosumers to compare
the benefit from participating in the P2P trading with and
without using its battery, allowing the prosumer to form
suitable social coalition groups. A discrete-time double-sided
auction model to enable energy trading between prosumers
in near real-time and forward markets was proposed in [8].
This device-oriented bidding strategy considers the physical
characteristics and the technical limitations of each device
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type, such as EVs or heatpumps, and use them maximize the
system reliability. It was shown that prosumers can reduce
their cost on average by 23% using the proposed approach.
The main challenges towards real world implementations of
P2P mechanisms are to scalability and asynchronicity of
the negotiation process. The work in [19] analyzed these
challenges, by comparing distributed community-based market
approaches to decentralized and distributed versions of P2P
electricity markets. The computational properties of distributed
and decentralized algorithms (ADMM and RCI) for market
clearing were also assessed. It was shown that community-
based distributed approaches are faster and more robust.
Centralized and distributed P2P markets are also contrasted in
[14]. The paper characterizes the solution of the P2P market as
a variational equilibrium problem (without price arbitrage) and
shows that the solution corresponds to that of social welfare
optimization.

A recent paper [11] proposes a Nash-type non-cooperative
game model between residential and commercial prosumers
to guarantee fairness in P2P trading. The proposed model
considers commonly used energy supply technologies, three
categories of storage, and various demand-side management
measures. Trading of both electricity and heating are consid-
ered. It was shown that trade-off can be achieved between
a totally fair trade (sacrificing the total cost saving) and a
minimal-cost trade with an unfair benefit allocation. In [15] a
P2P trading mechanism is proposed to encourage prosumers
to trade electricity in a community microgrid. The decision
making process for the participating prosumers is modeled
using a game theoretic approach and the Shapley value.

A bargaining-based energy trading model among intercon-
nected microgrids is presented in [36]. Microgrids with surplus
power generations trade with other microgrids in need of power
for mutual benefit. The amount of energy to trade as well as
the payments are decided cooperatively through a decentralized
algorithm, which solve the bargaining problem. The authors
showed that the total cost reduction is 22% when compared
with the case of no trading. The work in [37] also studied
the energy trading problem among interconnected microgrids,
but using Nash bargaining theory. In the proposed framework,
microgrids with excessive renewable generations can trade
with other microgrids for profit. A distributed solution method
is also proposed. The main goal of the paper is to design
an incentive mechanism using Nash bargaining theory to
encourage proactive energy trading and fair distribution of
the economical benefits. The bargaining problem is solved by
decomposing it into two sequential problems.

Choice of option contract for trading of electricity in the
day-ahead market is studied in [30]. It is shown that the power
producers participating in both day-ahead and option markets
can get a higher share of the profit than those who only
participate in the day-ahead market. A multi-stage stochastic
model is proposed in [27] to determine optimal option and
forward contracts for risk-averse producers. It is shown that
option contracts can reduce price and availability risks in power
markets. Real options approach is used in [9] to evaluate
the economic value of demand response programs (DRPs).

A probabilistic model for a real option contract between an
aggregator and its customers can be found in [29]. The model
determines the option value i.e., the incentive paid to the
customers by the aggregator, for the right to engage in demand
response by shifting loads. Other examples of option contract
for electricity trading can be found in the literature, for example,
between generators and SO [3], demand-side customers and
SO [25], and among microgrids [24].

Although energy storage using stand-alone batteries is still
quite expensive, impending growth of EVs may soon offer an
alternative. It is estimated that the number of EVs in the U.S.
will grow to 145 million by 2030 [38]. Considering an average
battery capacity of 70 kWh, these vehicles have the potential to
optimally store and share up to 1015 GWh per day. There is a
significant body of literature on optimal operation of EVs i.e.,
optimal charging and discharging for trading (arbitrage). An
auction-based game theoretic approach for optimal charging
of a group of EVs over a finite horizon is examined in [42].
In [1], a stochastic programming methodology is developed to
maximize aggregator’s profit by optimally scheduling charging
of EVs under varying market prices. Auction games for P2P
energy trading using EVs in smartgrids is explored in [12]. A
double-auction based noncooperative game approach in [28]
examines how groups of PHEVs can benefit by selling a part
of their stored energy back to the power market. The work
in [2] examines P2P trading of electricity between two sets
of EVs resulting in a significant reduction of the impact of
charging process on the power network during business hours.
It is shown that the trading also greatly reduces the energy
cost paid by the EV owners.

The remainder of this paper is organized as follows. Section
II presents mixed integer linear programs to obtain optimal
operational strategies for ALCE and AEV for both plain and
swing option contracts. In Section III, the GNBS model is
presented and its solution approach is discussed. A case study
in Section IV developed using price and demand data from
PJM market (in the U.S.) demonstrates the efficacy of the
GNBS model. Section V presents the concluding remarks.

II. OPERATIONAL MODELS FOR ALCE AND AEV WITH
OPTION CONTRACT

In this section, we develop separate operational models for
ALCE and AEV considering two different types of call option
contracts (plain and swing) for bilateral trading of electricity.

A. Notation

Parameters:
• ↵: Relative market power of the ALCE
• �bTb : Minimum required state of charge at time of

departure of EV b
• ⇢bTb : Desired state of charge at time of departure
• fijt: Magnitude of the fixed load (i, j) during time interval

t
• g: Price paid by the EV owners for charging
• K: Strike price
• P+, P�: Charge and discharge rate of the EVs, respec-

tively
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• �b: Maximum battery capacity of EV b
• ⇧t: Market price of electricity
• Q: option quantity for plain option contract
• Qt, Qt: Lower and upper bounds for energy purchase at

time t for swing option contract
• Q,Q: Lower and upper bounds for total energy purchase

for swing option contract
•
• Rij , Rij : Maximum and minimum level of consumption

of adjustable load (i, j), respectively
• Rj , Rj : Start and finish time intervals within which an

adjustable load j can be scheduled, respectively
• Sbt, Sbt: Minimum and maximum alowabe state of charge,

respectively, of EV b at time t
• sij : Consumption level per unit time of shiftable load
(i, j)

• Tb: Departure time of EV b
• ts, te: Start and final time intervals within which the

option contract can be exercised, respectively
• �ij : Total required consumption of the adjustable load
(i, j)

• ⌧ij : Length of operation of shiftable load (i, j)
• Tj , Tj : Start and finish time intervals within which a

shiftable load j can be scheduled, respectively
• µ1: Overcharge penalty
• µ2: Undercharge penalty
• !bt: Binary parameter equal to one if EV b is in the

parking lot at time t
• V : Option value
Decision variables:
• dit: Total energy consumed by LCE i at time t
• dt: Energy bought from the grid by ALCE at time t
• p+bt, p

�
bt: Energy charged and discharged, respectively,

from EV b at time t
• rijt: Energy consumption level of the adjustable load
(i, j) during time interval t

• qt: Energy bought by the ALCE from the AEV at time t
• q̃t: AEV estimate of energy requested by ALCE
• sbt: State of charge of EV b at time t
• s1b , s

2
b : Dummy variables to compute the overcharge and

undercharge penalties, respectively
• w+

bt: Binary variable equal to one if EV b is charging at
time t, and zero otherwise

• w�
bt: Binary variable equal to one if EV b is discharging

at time t, and zero otherwise
• xijt: Binary variable indicating on/off status of the

shiftable load (i, j) during time interval t
• yijt: Binary variable indicating on/off status of the

adjustable load (i, j) during time interval t
• z: Binary variable equal to 1 if the contract is exercised

at least once, and zero otherwise
• zt: Binary variable equal to 1 if the option contract is

exercised at time t, and zero otherwise
Sets:
• Ai: Set of adjustable loads of LCE i
• B: Set of EV batteries in the AEV
• C: Set of load consuming entities

• Fi: Set of fixed loads of LCE i Then, the total energy
that LCE i consumes at a given time interval t is:

• Si: Set of shiftable loads of LCE i
• T : Set of all time intervals of a day
Objective functions:
• uALCE: ALCE objective function
• uAEV: AEV objective function

B. Operational Models with plain option

By participating in a plain call option, the ALCE holds the
right, not the obligation, to acquire a fixed amount of electricity
from AEV at a prespecified strike price during a time interval
within a given time window. The ALCE pays a fee (option
value) to the AEV for the right.

1) ALCE’s model for plain option: We consider that the
ALCE loads are of two types: fixed and deferrable loads.
Schedules of fixed loads are not controlled. Deferrable loads are
considered to have two subcategories, shiftable and adjustable
loads. Operation of shiftable loads can be scheduled at any time
within their respective time windows. Whereas, for adjustable
loads, both time as well as level of power consumption can be
altered, while satisfying their total power requirement during
operational time windows.

Each load consuming entity (LCE) i within an ALCE
(denoted by C) has a set of shiftable loads denoted by Si.
For an individual load j 2 Si, the consumption level per unit
time is sij and its length of operation is ⌧ij . The start and finish
time intervals within which shiftable load j can be scheduled
are denoted by Tj , Tj 2 T , where T denotes the set of all
time intervals of a day over which the loads are scheduled.
Let xijt denote a binary variable indicating on/off status of
the shiftable load j of ith LCE during time interval t 2 T .
Then, we can write:

TjX

t=Tj

xijt = ⌧ij , 8i 2 C, 8j 2 Si. (1)

We denote the set of adjustable loads within a LCE i as Ai.
The maximum (minimum) level of consumption per unit time
of individual loads j 2 Ai is denoted by Rij (Rij) within the
allowable time window [Rj , Rj ]. Let yijt be a binary variable
indicating on/off status of the adjustable load j of ith LCE
during time interval t 2 T , rijt be the energy consumption
level, and �ij be the total required consumption. Then,

Rij yijt  rijt  Rijyijt, 8i 2 C, 8j 2 Ai, 8t 2 T , (2)

RjX

t=Rj

rijt = �ij , 8i 2 C, 8j 2 Ai. (3)

Let Fi be the set of fixed loads and fijt 2 Fi be the jth fixed
load of LCE i at time interval t. Then, the total energy that
LCE i consumes at a given time interval t is:

dit =
X

j2Fi

fijt +
X

j2Si

sijxijt +
X

j2Ai

rijt, 8t 2 T , i 2 C.

(4)
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Thus, the energy that the ALCE must buy from the grid at a
give time period is:

dt =

8
>><

>>:

X

i2C
dit � qt, ts  t  te,

X

i2C
dit, Otherwise,

(5)

where qt is the energy bought form the AEV at time interval
t within the option window defined by time intervals ts and
te. Recall that a plain call option can only be exercised once,
and the ALCE has the right, but not the obligation, to exercise.
Hence, we need to add the following constraints. Let zt = 1,
if energy is purchased by the ALCE from the AEV during the
time interval t and 0 otherwise, and Q is the option quantity.
Then we can write that

teX

t=ts

zt  1, and qt = Qzt, 8ts  t  te. (6)

Let ⇧t, K and V be the market price of electricity, the option
strike price, and the option value (paid once a day) respectively.
The ALCE aims to minimize the total cost of its LCEs using
the model below.

uALCE(K,V,Q,⇧) =

min
X

t2T
⇧tdt +

teX

t=ts

Kqt + V, (7)

s.t., (1)–(6),
dt, dit, qt, rijt � 0, 8t 2 T , 8i 2 C, 8j 2 Ai, (8)
xijt 2 {0, 1}, 8t 2 T , 8i 2 C, 8j 2 Si, (9)
yijt 2 {0, 1}, 8t 2 T , 8i 2 C, 8j 2 Ai, (10)
zt 2 {0, 1}, 8t 2 T . (11)

2) AEV’s model for plain option: Let B denote the set of
EV batteries in the AEV. For a given time interval t 2 T ,
energy balance of the battery b 2 B can be written as:

�bsbt = �bsb,t�1 + p+bt � p�bt, 8t 2 T , 8b 2 B, (12)

where �b is the maximum capacity of the battery b, sbt 2 (0, 1)
is the state of charge of battery b at the end of time interval t,
p+bt is the amount of energy that the bth battery draws from
the grid at time interval t, and p�bt is the amount of energy that
is extracted from battery. We assume that, the state of charge
of EV batteries are not allowed to be 0 nor 1, and hence the
following constraint is added to the model.

Sbt  sbt  Sbt, 8t 2 T , 8b 2 B. (13)

Note that, both Sbt and Sbt are input parameters that satisfy
0 < Sbt  Sbt < 1. Furthermore, the charging (discharging)
rate of a battery have a technical upper bound, which in general
is a convex and monotonically decreasing (increasing) function
of the current state of charge. For simplicity, we assume the
bounds to be constant. Hence, we can write that

0  p+bt  P+w+
bt 8t 2 T , 8b 2 B, and (14)

0  p�bt  P�w�
bt, 8t 2 T , 8b 2 B, (15)

where P+ (P�) is the charging (discharging) upper bound,
and w+

bt (w�
bt) is 1 if battery b is charging (discharging) at time

interval t, and 0 otherwise. The next constraint guarantees that
the battery b is not in charging and discharging simultaneously
during time interval t:

w+
bt + w�

bt  !bt, 8t 2 T , 8b 2 B, (16)

where !bt is a binary parameter with the value of 1 if the bth

battery is connected, i.e., the EV is in the parking lot, and 0
otherwise.

We assume that the EV owners are assessed a flat price
g (¢/kWh) for charging, even though the aggregation (AEV)
pays to the system operator based on time varying prices. The
flat price assumption is considered to relieve EV owners of
price anxiety. Note that, the value of the flat price (g (¢/kWh))
can always be adjusted by the aggregation to meet its objective
(profit or non profit). Hence, AEV receives a revenue from
each EV equal to g(sbTb � sb0)�b, where sb0 is the initial
state of charge and Tb 2 T is the departure time of the bth

EV. We denote the minimum required state of charge at the
time of departure of the bth EV as �bTb . Similarly, we denote
the desired state of charge at the time of departure as ⇢bTb .
If the state of charge at the time of departure is above ⇢bTb ,
the revenue for the surplus energy is assessed by AEV at
a lower rate of g � µ1, where µ1 is the overcharge penalty.
The AEV also pays the EV owner an undercharge penalty
µ2 (¢/kWh) for each unit of energy below at the time of
departure. To calculate the total amount of undercharge and
overcharge penalties, we introduce two continuous variables
as follows:

sbTb � ⇢bTb = s1b � s2b 8b 2 B, (17)

where s1b , s
2
b � 0. Then the total overcharge and undercharge

penalty (revenue losses) are computed as µ1
P

b2B �bs1b and
µ2

P
b2B �bs2b , respectively. Note that, �bTb is not required

to compute the undercharge penalty. This parameter is the
minimum required state of charge at the time of departure,
which is a constraint that is always met by the optimization
model (SbTb

= �bTb). The undercharge penalty is calculated
using ⇢bTb (desired state of charge). Each EV owner discloses
both ⇢bTb and �bTb . The optimization model guarantees that
the state of charge at departure is at least �bTb and it considers
an undercharge penalty if the state of charge at departure is
below ⇢bTb . The option related constraints are discussed next.

The following constraint is introduced to account for the
power that AEV commits to ALCE in the option window:

X

b2B
p�bt = q̃t(⇧,K), ts  t  te. (18)

The option quantity must be supplied using the stored power
if the option is exercised. However, the AEV does not know
the decision making process of the ALCE, therefore it must
estimate qt. We denote as estimate of the vector q given the
random price of electricity ⇧ as q̃(⇧,K), or in component-
wise form, q̃t(⇧,K). Hence the AEV’s model for the plain
option is formulated as follows.

uAEV(K,V,Q,⇧) =
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min
X

t2T

X

b2B
⇧tp

+
bt + µ1

X

b2B
�bs

1
b + µ2

X

b2B
�bs

2
b

� g(sbTb � sb0)�b �K
teX

t=ts

q̃t(⇧,K)� V, (19)

s.t., (12)–(18),
p+bt, p

�
bt, sbt, s

1
b , s

2
b � 0, 8t 2 T , 8b 2 B, (20)

w+
bt, w

�
bt 2 {0, 1}, 8t 2 T , 8b 2 B, (21)

where

q̃t(⇧,K) = Qz̃t(⇧,K), ts  t  te, (22)

z̃(⇧,K) = argmax
z̃

teX

t=ts

(⇧t �K)z̃t, (23)

s.t.,
teX

t=ts

z̃t  1, (24)

z̃t 2 {0, 1}, ts  t  te. (25)

For simplicity of notation, we define C = (K,V,Q) for the
plain option, and write the disutility functions as uALCE(C,⇧)
and uAEV(C,⇧). Note that these disutilities are random
variables.

C. Operational Models with swing option

Swing call option for electricity, has the following key
characteristics: 1) purchase of contract quantity can be divided
among one or more time intervals within the window, 2)
purchase quantities may have time dependent bounds, 3) the
strike price may either be fixed or vary for different time
intervals, and 4) the ramp up/down rates of quantity purchased
may also be bounded. In the swing option model considered
here, we only consider characteristics 1 and 2.

1) ALCE’s model for swing option: In addition to constraints
(1)–(5) and (8)–(11) in the ALCE’s model for plain option,
we need a few other constraints as described below. In a swing
contract, if ALCE exercises the option, the energy bought at
each interval as well as the total quantity bought over the
contract window must satisfy

Qtzt  qt  Qtzt, ts  t  te, and (26)

Qz 
teX

t=ts

qt  Qz, (27)

where Qt(Qt) and Q(Q) are the lower (upper) bounds for
energy purchase during a time interval t and over the total
contract window, respectively. Also, zt = 1 if the option is
exercised at time interval t and 0 otherwise, and z = 1 if the
option is exercised at least once within the window. Therefore
the relationship between zt and z is given as

teX

t=ts

zt  (te � ts + 1)z. (28)

Then the ALCE model for a swing call option can be given as

uALCE(K,V,Qt, Qt, Q,Q,⇧) =

min
X

t2T
⇧tdt +

teX

t=ts

Kqt + V, (29)

s.t., (1)� (5), (8)� (11), (26)� (28), z 2 {0, 1}. (30)

2) AEV’s model for swing option: Since the AEV is
subjected to the value of qt chosen by the ALCE, the same
general model proposed for plain option in (19) applies for
the second stage problem in a swing contract. However, the
first stage must consider the additional contract parameters.
Then we have that

uAEV(K,V,Qt, Qt, Q,Q,⇧) =

min
X

t2T

X

b2B
⇧tp

+
bt + µ1

X

b2B
�bs

1
b + µ2

X

b2B
�bs

2
b

� g(sbTb � sb0)�b �K
teX

t=ts

q̃t(⇧,K)� V, (31)

s.t., (12)–(18), (20), (21),

where

q̃(⇧,K) =

argmax
q̃

teX

t=ts

(⇧t �K)q̃t, (32)

s.t., Qtz̃t  q̃t  Qtz̃t, ts  t  te, (33)

Q z̃ 
teX

t=ts

q̃t  Q z̃, (34)

teX

t=ts

z̃t  (te � ts + 1)z̃, (35)

z̃t 2 {0, 1} ts  t  te, (36)
z̃ 2 {0, 1}. (37)

For simplicity of notation, we define C0 =
(K,V,Qt, Qt, Q,Q) for the swing option, and write
the disutility functions as uALCE(C0,⇧) and uAEV(C0,⇧).
This two-stage formulation was adapted from [13].

III. CALL OPTION CONTRACT DESIGN

In this section, we present the model to obtain the optimal
strike price and option value when all the other option
parameters are given for the plain and swing option contracts.
We use the Nash’s approach to the bargaining problem to
obtain a fair option contract for both ALCE and AEV while
considering their relative market power.

The objectives of ALCE and AEV are to minimize their
disutility by establishing an optimal option contract. However,
since the objectives are in conflict, a contract that simultane-
ously minimizes their costs does not exist. In such a scenario,
the aggregators may cooperatively bargain with each other to
find the most appropriate contract. The bargaining problem
can be formalized as follows [41]. Let n = 1, 2, ..., N be the
set of players, and S be a closed and convex subset of RN

that represents the set of feasible payoff (cost) allocations
that the players can get if they cooperate. Let uk

0 denote the
minimal (maximal) payoff (cost) that the kth player would
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expect without cooperation. The vector (S,u1
0, ..., u

N
0 ) is called

a N -person bargaining problem. We chose the Nash bargaining
solution (NBS) to address the two person (ALCE and AEV)
bargaining problem. NBS is known to be invariant, Pareto
optimal, independent of irrelevant alternatives, and symmetrical.
In a bilateral negotiation, it is reasonable to expect that the
player with higher market power will have a larger share
of the benefits than the weaker player. To incorporate the
market power, we use the generalized Nash bargaining solution
(GNBS) approach [18]. The GNBS for the plain option contract
can be formulated as:

max
⇣
E[uALCE(0,⇧)]� E[uALCE(C,⇧)]

⌘↵

⇣
E[uAEV(0,⇧)]� E[uAEV(C,⇧)]

⌘1�↵
(38)

s.t., (1)� (25),

where ↵ 2 (0, 1) is an indicator of ALCE’s relative market
power, and E[uALCE(0,⇧)] is ALCE’s expected payoff at the
disagreement point; E[uAEV(0,⇧)] denotes the same for AEV.

The GNBS formulation for the swing option is similar to
that of plain option, the only difference being in the set of
constraints that define the feasible set. It can be written as

max
⇣
E[uALCE(0,⇧)]� E[uALCE(C0,⇧)]

⌘↵

⇣
E[uAEV(0,⇧)]� E[uAEV(C0,⇧)]

⌘1�↵
(39)

s.t., (1)� (5), (8)� (11), (12)–(18), (20), (21),
(26)� (28), (30), (32)� (37).

Note that, uALCE(C,⇧) and uAEV(C,⇧) can be written as

uALCE(C,⇧) = uALCE(K, 0, Q,⇧) + V, (40)
uAEV(C,⇧) = uAEV(K, 0, Q,⇧)� V. (41)

Similar expressions can be written for the swing option.
In the rest of this section, we present an approach for

obtaining the optimal values of the option parameters. An
expression for the option value V can be found using the first
and second order conditions for a given strike price K. Let,
for the plain option, we denote the objective function of the
NBS problem as N , where

N =
⇣
E[uALCE(0,⇧)]� E[uALCE(C,⇧)]

⌘↵

⇣
E[uAEV(0,⇧)]� E[uAEV(C,⇧)]

⌘1�↵
. (42)

For swing option, the expression for N is same as above with
C replaced by C0.

Proposition 1. For any given K and Q, the optimal option

value V is given as

V =(1� ↵)
⇣
E[uALCE(0,⇧)]� E[uALCE(C̃,⇧)]

⌘

� ↵
⇣
E[uAEV(0,⇧)]� E[uAEV(C̃,⇧)]

⌘
,

(43)

where C̃ = [K, 0, Q] for the plain option and C̃ =
[K, 0, Qt, Qt, Q,Q] for the swing option.

Proof. The value of V in (43) maximizes N . Note that,

since V does not appear in any of the constraints of the GNBS
model (38) and (39), we can use the first and the second order
conditions to obtain its value. Solving for V directly is not
straightforward due to the product and the powers in N . Taking
the logarithm of N removes both the products and the powers:

log(N) =↵ log
⇣
E[uALCE(0,⇧)]� E[uALCE(C,⇧)]

⌘
+

(1� ↵) log
⇣
E[uAEV(0,⇧)]� E[uAEV(C,⇧)]

⌘
.

(44)

Note that, we can write from (40) and (41) that
@

@V
E[uALCE(C,⇧)] = 1, and

@

@V
E[uAEV(C,⇧)] = �1.

Then, we have that @ log(N)
@V can be obtained as

@ log(N)

@V
=

�↵
E[uALCE(0,⇧)]� E[uALCE(C,⇧)]

+

1� ↵

E[uAEV(0,⇧)]� E[uAEV(C,⇧)]
. (45)

By making @ log(N)
@V = 0, we have that

↵(E[uAEV(0,⇧)]� E[uAEV(C,⇧)]) =

(1� ↵)(E[uALCE(0,⇧)]� E[uALCE(C,⇧)]). (46)

Finally, by solving for V , we obtain the optimal V in (43).
To show that it maximizes the GNBS, we must check the
second-order condition, i.e., @2 log(N)

@V 2 < 0. Then, by taking
the second derivative, we have that

@2 log(N)

@V 2
=� ↵

(E[uALCE(0,⇧)]� E[uALCE(C,⇧)])2
�

1� ↵

(E[uAEV(0,⇧)]� E[uAEV(C,⇧)])2
< 0,

(47)

for all ↵ 2 (0, 1). Therefore, (43) returns the value of V that
maximizes (42). Given that all values of V are feasible to
the ALCE and AEV’s problems (since V does not appears in
the constraints), the unconstrained solution given by (43) also
solves problems in (38) and (39). Note that the option value
V can be obtained by independently solving the models of
ALCE and AEV.

Note that, if both K and V are given, since there are no
other common variables between the ALCE’s and the AEV’s
models, the optimal solution of the GNBS formulation in (38)
and (39) can be found by solving the models of the ALCE and
AEV individually. However, if only V is given, the optimal
solution of the problem can be found by effectively exploring
the possible values of K. Also, to obtain optimal values
for the option parameters (K and V ) as well as the GNBS
solution, we need to asses the value of E[uALCE(C̃,⇧)] and
E[uAEV(C̃,⇧)], for which we use the sequential Montecarlo
simulation approach as implemented in [30] and [29].

So far we have discussed how to obtain the optimal strike
price and option value considering that ALCE and AEV are
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interested in bargaining for these two quantities. Other contract
parameters, i.e., option quantity and time window must also be
establish to fully characterize the option contract. Regarding
the time window, it is in the interest both ALCE and AEV that
the time window encompasses the daily on-peak time periods
at which the electricity prices are normally higher [22]. These
time periods are important to the ALCE because it can hedge
against higher prices and also to AEV because it can negotiate
higher values for strike price and option value. Regrading
the option quantity, the cost reductions of the participating
aggregations increase with increasing option quantity. Hence,
both ALCE and AEV should be interested in having a high
value for the option quantity. This value, however, is bounded
by either AEV’s capacity to deliver or ALCE’s needs. In our
numerical study section, we show the impact of the choice of
option quantity in the total cost reduction and on the option
value.

IV. NUMERICAL STUDY

The numerical study objectives are: 1) to evaluate the cost
and benefit of ALCE and AEV by entering into a bilateral
trading contract, and 2) to examine the optimal choices of
the contract parameter values. For this purpose we construct
a sample numerical problem as follows. It is considered, for
simplicity, that the ALCE and the AEV are connected to the
same node of a network. The ALCE is comprised of five load
consuming entities (LCEs), which are identical except that each
has a separate time window (3–11, 5–14, 7–14, 12–21, and
10–17 hours) to operate its shiftable and adjustable loads. The
total load of the ALCE is obtained by scaling down load data
(by a factor of 240) from the DAY node of the PJM network
in the U.S. The scaling factor was chosen to make the scope
of ALCE’s operation comparable to that of the AEV, described
later. Of the total ALCE load, 40% is considered fixed and
the remaining 60% is divided equally between shiftable and
adjustable loads. The AEV is comprised of 200 EVs, each
with battery capacity rating of 30 kWh. We assume that all
EVs arrive at the parking facility at 8 AM and depart at 6 PM;
random arrival and departure of EVs have been modeled in
[31]. We also assume that EVs arrive to the parking facility
with an average of 50% state of charge (SOC) and have an
average desired SOC of 70% at the time of departure. The
minimum and maximum SOC at the time of departure are 60%
and 90%, respectively. It is considered that the EV owners pay
a flat price to AEV for charging @ 8¢/kWh. The AEV incurs
an undercharge/overcharge penalty (paid to the EV owners
@ 5¢/kWh) if the SOC of an EV at the time of departure is
below or above the desired SOC of 70%. The hourly locational
marginal prices (LMPs) of electricity at the network node,
where ALCE and AEV are connected, are obtained as follows.
We consider the LMP data from DAY node of the PJM network
during July 15, 2017 to July 30, 2017. From this LMP data,
we calculate the mean and variance for each hour, and use
those as parameters of the normal distributions that we assume
to describe the hourly LMP variations. Random samples from
these hourly distributions are drawn to generate a number
of daily price scenarios, which are used in the Montecarlo
simulation approach to solve the GNBS model.
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Fig. 2: ALCE and AEV cost for different optimal strike prices
in plain call option

Our GNBS model considers option quantity and market
power as input. The decision variables are strike price and
option value. However, since simultaneous optimization of both
decision variables is computationally challenging, we optimize
one parameter given the other. For the sample numerical
problem, the time window for the option contract is considered
to be from 3 PM to 6 PM. For the swing call option, the upper
limit for quantity in any given time interval within the window
is 250 kWh. Our model is implemented using Julia-0.6.2
and GUROBI 7.5.2. The results are summarized in Figures 2
through 4.

We first addressed our objective of assessing benefits of
ALCE and AEV in entering into a bilateral contract. For this,
we obtained the optimal values of their costs with and without
contract, for various combinations of contract parameters K,
V , and ↵, and a constant option quantity of 1000kWh. Figure
2 presents the results obtained from a plain option contract.
For each value of the ALCE market power (↵) and a wide
range of strike prices (K), our solution approach obtained
the corresponding optimal option values (V ) as well as the
expected costs for both ALCE and AEV (denoted as E[uALCE]
and E[uAEV]). As observed from the figure, the cost reduces
with increasing market power, for both parties. The cost curves
have three distinct regions: for K values from $0/MWh to
$55/MWh, $55/MWh to $105/MWh, and over $105/MWh. The
first region presents a number of alternative optimal solutions
(i.e., various optimal combinations of K and V ). In the second
region, the cost increases with K for both ALCE and AEV.
This is due to the fact that for K >$55/MWh, the contract is
often not exercised as some of the daily price scenarios do
not exceed the strike price within the contract time window,
thus reducing the benefits derived from the contract. In the
third region, for K >$105/MWh, none of the daily price
scenarios generated for our sample numerical problem exceed
the strike price. This yields an option value of zero, and
the corresponding costs represent the case with no contract
(disagreement point). The disagreement cost for ALEA and
AEV are $3145.8 and $4, respectively. It is evident from the
results that, for the chosen numerical problem and the price
scenarios, the ALCE and AEV should select any strike price
that is below the threshold of $55/MWh to maximize their
benefits from a bilateral contract. The maximum total benefit
resulting from such a bilateral contract is $52.65 per day,
which is the sum of the differences between the disagreement
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cost and cost for K below $55/MWh for ALCE and AEV.
Their respective shares of the benefit are ↵ ⇥ $52.65 and
(1 � ↵) ⇥ $52.65, respectively. Similar cost/benefit patterns
have also been observed for swing option, and hence not
presented here. We also examined benefits as a function of the
option quantity (Q). Increasing trends for benefits vs. option
quantity were observed for both option types, for the range Q
between 0-1000 kWh. This is depicted in Figure 3 for ALCE.
This increasing pattern should hold as long as ALCE has the
capacity to fully consume the option quantity. If Q grows too
large beyond ALCE’s capacity, then the plain option benefit
will sharply drop to zero. In our numerical problem, the AEV
did not have the capacity to offer Q larger than what ALCE
can accommodate. Hence, we could not generate a scenario
where the plain option benefit would drop to zero.

Hereafter, per objective 2 of our numerical study, we
explored the relationships between the optimal values of the
contract parameters for plain option. Figure 4 (left) shows the
optimal option values (V ) corresponding to a range of strike
prices (K), for various levels of ALCE market power (↵). The
optimal option values were obtained solving (43). It can be
observed that V decreases monotonically (up to a certain point)
with increases in K. Interestingly, the value of V drops below
zero in some cases, which indicates that, beyond a certain
value of K (e.g., approximately $36/MWh for ↵=0.8), the
GNBS makes the option value negative, where AEV pays the
fee to ALCE. For lower values of ALCE’s relative market
power, V becomes negative at relatively higher strike prices.
Beyond a certain strike price ($70/MWh), the option value paid
by AEV starts to decrease (move towards zero). This is due to
the fact that, at such high values of K, an increasing number
of the price scenarios remain below the strike price, thus not
triggering the option purchase and reducing AEV’s revenue.
Further increases in the value of K gradually pushes the V to
zero. It is observed that the turning point for V is independent
of market power, as it depends only on the strike price and the
considered set of price scenarios. A similar trend is observed
(not presented here) for the swing call option, where the turning
point for V is lower and approximately at K = $55/MWh.
This reduction is as expected since AEV’s revenue is higher
in plain call option in this numerical example. Figure 4 (right)
depicts the impact of option quantity Q on parameters V and
K, for ↵=0.2. We observe the following. V increases with Q,
albeit at a slower pace as K increases. Beyond a certain strike
price (e.g., K =$70/MWh), V decreases with increasing Q.
Finally, if K is increased further (e.g., K �$75/MWh), V
remains constant at zero.

Based on the observations made from the numerical study,
we have developed the following step-by-step procedure for
implementing the GNBS approach for obtaining an optimal
option contract:

1) Option window is chosen by ALCE such that it encom-
passes the on-peak time periods of the day.

2) Option quantity can be selected as the minimum between
ALCE’s need and AEV’s capacity to deliver.

3) A threshold for the strike price is obtained as follows.
This can be done by either ALCE or AEV since in either
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Fig. 3: ALCE cost saving comparison for different option
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case the threshold will be the same.
a) Take random samples of daily electricity prices

(⇧).
b) Set the option value V to be a small arbitrary

number.
c) Initialize the search for the threshold with two seeds

K0 and K1 (K0 < K1) of the strike price.
d) Solve the operational model for the chosen option

type for both K0 and K1.
e) Compute the rate of change of the cost with respect

to the strike price.
f) Set K0  K1 and increase the current value of

K1.
g) Recompute the rate of change of the cost with

respect to the strike price using the current values
of K0 and K1.

h) If the rate of change differs from the one in the
previous iteration, STOP, the threshold is equal to
K0; otherwise return to Step 3f.

4) Choose any strike price below the threshold obtained
from Step 3 and use equation (43) to obtain the optimal
option value V . We note that this step will have to be
solved in a centralized manner as operational models of
both ALCE and AEV are required to solve (43).

V. CONCLUDING REMARKS

Although energy trading in power markets is expanding
among prosumers at the peer-to-peer level, trading among
aggregations of end-use consumers has not yet been adequately
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explored. In this paper, our objective has been to promote
local energy trading among aggregations of empowered end-
use consumers. We have developed a bilateral option contract
framework between two types of such aggregations , namely,
aggregation of load consuming entities only (ALCE) and
aggregation of electric vehicles (AEV). The framework uses
a generalized Nash bargaining solution approach to find
the optimal contract parameters. Using a sample numerical
problem, we have examined the properties of two different
kinds of option contracts (plain and swing) and assessed
their benefits to the participating aggregations. We have
demonstrated via numerical results that the aggregations of
end-use consumers can benefit from bilateral contracts for
trading electricity.

In what follows, we discuss some of the desired properties of
obtaining an optimal option contract using the GNBS approach
and how it relates to the general multi-objective optimization
framework. Reaching an agreement between two aggregations
is a multi-objective optimization problem (MOOP) in which
each aggregation has its own objective function to optimize.
In general, when solving a MOOP all (or some) of the Pareto-
optimal solutions are identified to construct the so called
Pareto frontier or non-dominated frontier. Computing each
Pareto-optimal solution might be computationally expensive
[5]. Obtaining the non-dominated frontier might be infeasible in
practice. Hence, the aim could be to find a single Pareto-optimal
solution that considers the objectives of both aggregations
while guaranteeing fairness. A possible approach is to use
a weighted sum of the objectives with the hope to find a
good solution by exploring different values of the weights.
However, for non-convex MOOPs, there may exist many (and
possibly infinite) Pareto-optimal points that cannot be obtained
by optimizing a weighted sum of the objective functions. Such
points are called unsupported Pareto-optimal points [7]. Hence,
a major disadvantage of this method is that it completely
ignores the existence of unsupported Pareto-optimal points
that can possibly attain a better balance (more fair) between
different objectives.

Approaches to obtain fair solution can be found in the
literature, e.g., the max-min approach which maximizes the
objective of the least satisfied aggregation. However, this
category of approaches, while being fair, may disregard
efficiency (total cost minimization) of the solution. The GNBS
approach provides a natural compromise between fairness and
efficiency. This is so, since maximizing the geometric mean
leads to a more balanced valuation without neglecting efficiency
[6]. Some of the desirable properties of the GNBS include
1) it returns a Pareto-optimal solution, 2) It can decrease the
computational time significantly when compared to complete
multi-objective optimization approach, 3) it generally avoids
the endpoints of the non-dominated frontier and thus it
generates a good balance between objectives, 4) it does not
ignore unsupported Pareto-optimal points and it might yield
such points as solution and, 5) it attempts to ensure that the
benefits are distributed fairly with respect to the relative market
power of aggregations.

EV owners receive payment from selling energy to the

ALCE. However, concerns regarding degradation of batteries
due to discharge for trading may naturally arise, prompting
the EV owners to hesitate to participate in P2P trading. This
concern can be addressed as follows. It is standard practice
that when a battery capacity reduces bellow certain level, it is
recommended for replacement. Some authors consider such
replacement when battery capacity reduces to 80%, while
others consider replacement at 50% [26]. For replacement at
80%, the battery goes through approximately 3650 cycles, and
the corresponding numbers for 65% and 50% replacement
rule are approximately 6400 and 9150, respectively [26]; this
numbers consider a full depth of discharge (DOD) cycle.

For the problem considered in this paper, there is only one
contract window per day. Even when the contract is exercised
for a given option quantity, only a subset of the batteries may
need to be discharged, that too perhaps partially. It is well
known that DOD significantly affects the battery longevity
[39] and the equivalent number of cycles is proportional to
the DOD [10]. If we consider 1.5 cycles per day, 0.5 due to
trading and one for traveling, the EV batteries may need to
be replaced approximately on 7, 12, and 17 years as per 80%,
65%, and 50% replacement rule, respectively. Even with two
full DOD per day, with 65% replacement rule, an EV battery
should last approximately 9 years.

The cost of battery degradation is not included in our model.
Based on the nature of option contract, the daily expected
discharge and the corresponding degradation cost are constant
[21]. Consideration of this fixed cost does not fundamentally
alter our model, though it will alter the value of contact
parameters in equilibrium. For example, the degradation cost,
if considered, will be added to the term E[uAEV(C̃,⇧)] in
Equation (43). This will yield a higher magnitude of the option
value for any given strike price in an optimal option contract.
This bias can added at the end of the optimization process.

Our methodology has a few limitations that may be ad-
dressed in future work. First, we have assumed that both ALCE
and AEV are loads on the same bus of the network. In practice,
energy trading can occur between aggregations connected to
different buses. In that case, congestion costs and differences
in hourly LMPs must be considered for option contract design.
This will require incorporation of an optimal power flow
model in our methodology. Second, we have assumed in our
model implementation that the EVs arrive to and depart from
the parking facility at set times. A more generalized model
implementation will consider the parking lots as smart hubs
in which the EVs come and go throughout the day depending
on their trip plans and charging needs. Finally, although we
incorporate relative market power in bilateral contract design
and examine its impact, it is not clear how to estimate its
numerical value. The traditional approach to study market
power in electricity markets uses concentration measures such
as the Hirschman-Herfindahl Index (HHI) or the quantity
modulated price index (QMPI) [23]. These measures are mostly
used to estimate generators’ market power and are used by
FERC as fundamental screening tools for merger analysis
in this sector. Research has shown that concentration based
measures can be misleading indicators of the market power
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in electricity markets [4]. From a demand-side perspective, a
body of research agrees that market power is a function of
demand elasticity and the ability to respond to time-varying
price signals. However, how to estimate the relative market
power of peers engaged in energy trading remains an open
research question.
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