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Abstract

Humanitarian aid distribution often prioritizes rapid relief operations or emergency services under time constraints, as opposed
to commercial transportation problems, where the primary objective is to minimize operational costs. Drones can offer immense
potential to achieve this goal by leveraging their aerial mobility. Specifically, drones can surpass ground transportation and navigate
directly through disrupted or inaccessible roads, ensuring the quickest path to deliver aid where the ground vehicle may face
obstacles. However, drones have limitations in terms of flying range and load capacity. To effectively provide time-sensitive
emergency services, combining a ground vehicle with one or more aerial vehicles enhances coverage. Our approach integrates a
truck as a mobile depot for multiple drones, where a drone battery is replenished on landing after a flight, and the fleet operates in
tandem to serve the locations visited. We formulate a mixed-integer linear programming (MILP) model to maximize the weighted
sum of locations served by this mixed truck-drone fleet under time constraints. We further develop a branch-and-price algorithm
to solve this problem, where the pricing subproblem is solved using dynamic programming recursions with dominance rules. Our
results demonstrate the computational superiority of this method compared to a commercial optimization solver and its potential
for expediting aid distribution during an emergency.
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1. Introduction
Emergency services play a crucial role in various scenarios such as natural disasters, severe weather conditions, and
lockdowns due to political, healthcare, security, or public safety reasons. These services cover various necessities,
including dietary or medicinal requirements and basic life support products. Such services or surveillance in emergen-
cies must be efficiently executed across the affected locations within a specific time window. In this study, we focus
on the last-mile routing of a service vehicle, referred to as a truck, during an emergency. Our goal is to maximize
the number of locations served, rather than the conventional optimization of travel distance or routing costs which are
commonly addressed in transportation problems.

In recent years, the Traveling Salesman Problem with Drone (TSP-D) [1, 2] has gained significant attention for its
potential to reduce the makespan of a truck with the assistance of a drone. In addition, the response team often faces
prolonged road travel times due to blocked roads, traffic, accidents or closed/restricted paths during a humanitarian
crisis. Aerial vehicles can overcome many of these obstacles and are typically faster than the ground vehicle. Recog-
nizing the advantage of drones in reducing the total travel time, we incorporate truck routing with multiple drones into
our problem. Most commercial drones have a load limit of one package per trip. Due to this capacity limit and flying
range restriction, utilizing multiple drones in conjunction with a truck can significantly enhance emergency service.
We assume that the truck acts as a moving depot for the drones, waiting at a location while the drones take off, serve,
and land back on the truck. Moreover, the truck provides service to any location it visits.

Throughout this manuscript, we will refer to the presented transportation problem as the Emergency Traveling Sales-
man Problem with Multiple Drones (E-TSPMD). The rest of this paper is organized as follows: Section 2 briefly
discusses the related literature on truck-drone fleets. In Section 3, we formulate a mixed-integer linear programming
(MILP) model to address E-TSPMD and obtain the optimal solutions using an exact branch-and-price (BP) method in
Section 4. Finally, our numerical experiments are detailed in Section 5, followed by the conclusions in Section 6.
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2. Related Literature
With a remarkable increase in the utilization of aerial unmanned vehicle-assisted deliveries, truck routing with drones
has been increasingly studied in recent years. This problem was introduced as the Flying Sidekick TSP (FSTSP) [1],
with two different MILP formulations and heuristics employed to obtain solutions. A related variation of this problem,
known as TSP-D [2], emerged subsequently. For a comprehensive review of collaborative routing problems involving
trucks and drones, one can refer to [3, 4]. Bouman et al. [5] improved the solution quality and computational time for
TSP-D by introducing dynamic programming (DP) and greedy approach-based heuristics, respectively. More efficient
MILP formulations and a BP algorithm were later employed in [6] to solve TSP-D instances involving up to 39 nodes,
to optimality. The authors incorporated a DP approach to address the pricing problem. Among heuristic approaches,
the genetic algorithm proposed in [7] stands out with the best-known results for large instances of both TSP-D and
FSTSP. Vehicle Routing Problem with Drones (VRP-D), a more generalized problem, is solved in [8] using a BP
method, where the pricing problem is initiated with a heuristic column generation for computational advantages.
Despite the extensive research on TSP-D and FSTSP, there exists a limited number of studies that address humanitarian
concerns through the integration of mixed truck-drone fleets. Given the immense potential for drone applications
in humanitarian logistics, as discussed in [9], it is imperative to conduct additional research on collaborative relief
services using trucks and drones. As highlighted in Section 1, employing a mixed truck-drone fleet in emergency
services offers significant advantages. Recently, a robust Vehicle Routing Problem with Drones (VRP-D) specifically
designed for humanitarian logistics, was tackled using a branch-and-cut algorithm incorporating bidirectional labeling
to solve the pricing problem [10]. The majority of related research focuses on minimizing either cost or make-span
as the optimization objective. In a different approach, Zhang et al. [11] proposed a collaborative truck-and-drone
routing model for humanitarian relief, where the model aims to maximize the value of information collected from
the network. The authors obtain the solutions using a column generation framework and discuss a real-world case
study. Moreover, many existing studies assume that all locations must be visited by a vehicle, a scenario that may
need to be violated in the context of rapid relief logistics under strict time constraints. Our E-TSPMD model addresses
this limitation by serving the most number of locations, subject to priority weights, under time constraints during
humanitarian emergencies. In our research, we adopt the exact method proposed in [6] with several modifications
tailored to our specific problem. We incorporate suitable DP recursions and introduce novel dominance rules to solve
the E-TSPMD effectively.

3. Problem Description
In this section, we formulate the E-TSPMD as an MILP to maximize the weighted sum of locations serviced within
the specified time constraints.

3.1 Assumptions
Consider a truck that starts from a depot, which acts as a moving depot for l homogeneous drones. Our E-TSPMD
model has the following assumptions:

• Each drone has a limited flight time due to battery capacity. After a node visit, a drone returns to the truck where
its battery is replaced (or fully recharged) instantaneously. The flying time restrictions have been incorporated
during the data preprocessing phase.

• While a drone is in flight, the truck remains stationed at the same node, allowing all drones to complete their
visits and return before the truck proceeds. Movement of drones occurs only when the truck is stationary at a
node. In essence, the truck serves as a mobile depot for the drones.

• Each drone has a load limit of one product. Given the homogeneous and unit-value nature of all demands in this
scenario, service times at nodes are neglected.

• Drone speed is equal to or faster than the truck, a valid assumption given the drone’s capability to navigate a
straight line path above ground with fewer restrictions compared to road transportation.

• Drones can perform multiple trips from a truck node, including the depot while the truck is stationed there.
• E-TSPMD optimizes routing decisions to maximize the weighted coverage of locations under time restrictions,

without considering the fleet’s final movement back to the depot.

3.2 Notations
The notations utilized in our model, including sets, parameters, and variables, are defined as follows:



Sobhanan, Mahmoudinazlou, Charkhgard, Kwon

Parameters
n Total number of locations that require service l Number of drones
0,0′ Signifies the same depot for the start node and

end node of the truck journey, respectively
r Drone flying time limit

tT
i j Truck travel time from node i to node j tD

i j Drone travel time from node i to node j
t j Time limit for service completion at node j w j Priority weight corresponding to location j
Sets
N Set of service nodes; N = {1,2, . . . ,n} N̄ Set of all network nodes; N̄ = {0}∪N0′

N0′ Set of service nodes and depot as end node;
N0′ = N ∪{0′}

N0 Set of service nodes and depot as start node;
N0 = {0}∪N

D Set of drone indices {1,2, . . . , l} K Set of drone service indices {1,2, . . . ,n− l +1},
representing the tour count of a drone from a
given node

Decision Variables
xi j Binary decision variables which equals to 1

when the truck serves node j starting from node
i, and 0 otherwise

ydi jk Binary decision variable which equals to 1 when
drone d starts from truck location i, serves j (and
returns to the stationary truck) in k-th order, and
0 otherwise

ci Arrival time of the truck at node i

3.3 Arc-based Formulation
Our E-TSPMD model is formulated as follows:

z∗ = max ∑
i∈N0

∑
j∈N

w jxi j + ∑
d∈D

∑
i∈N0

∑
j∈N

∑
k∈K

w jydi jk (1)

s.t. ∑
j∈N

x0 j ≤ 1 (2)

∑
i∈N0

xi j = ∑
k∈N0′

x jk ∀ j ∈ N0′ (3)

yd jk1 ≤ ∑
i∈N0

xi j ∀ j,k ∈ N;d ∈ D (4)

tD
i j ydi jk ≤ r/2 ∀ j,k ∈ N;d ∈ D;k ∈ K (5)

c j ≤ t j ∀ j ∈ N (6)

∑
j∈N

ydi jk ≥ ∑
j∈N

ydi jk+1 ∀i ∈ N0;d ∈ D;k ∈ K \{n− l +1} (7)

∑
j∈N

ydi jk ≤ 1 ∀i ∈ N0;d ∈ D;k ∈ K (8)

∑
k∈K

ydi jk ≤ 1 ∀i ∈ N0; j ∈ N;d ∈ D (9)

M(1− xi j)+ c j ≥ ci + tT
i j +2 ∑

l∈N
∑
k∈K

tD
il ydilk ∀d ∈ D; i ∈ N0; j ∈ N0′ (10)

M(1− ydi jk)+ c j ≥ ci +2 ∑
l∈N

∑
m∈{1,2,...,k−1}

tD
il ydilm + tD

i j ∀d ∈ D; i ∈ N0; j ∈ N0′ ;k ∈ K (11)

∑
i∈N0

xi j + ∑
i∈N

∑
d∈D

∑
k∈K

ydi jk ≤ 1 ∀ j ∈ N (12)

xii = 0 ∀i ∈ N̄ (13)
xi j ∈ {0,1} ∀i, j ∈ N̄ (14)
ydi jk ∈ {0,1} ∀i, j ∈ N̄;d ∈ D;k ∈ K (15)
ci ∈ R≥0 ∀i ∈ N̄ (16)

The objective function in equation (1) aims to maximize the priority weights obtained through the traversal of nodes
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from the set N. Constraints (2) ensure that the truck moves to at most one location from its origin, and (3) indicates
the flow conservation constraints for the truck. Constraints (4) specify that a drone movement is only possible from a
truck node. The flying range time constraints of the drones are presented in (5). Furthermore, constraints (6) enforce
that each potential node visit must be completed within the corresponding time limit. The multi-visit sequence of
each drone from a node, where the truck is stationary, is enforced through constraints (7)–(9). The model efficiently
employs all available drones concurrently, as required, and thus helps to minimize the overall makespan of the fleet.
Since the drones are homogeneous, constraints (7) break the symmetry in the utilization of the drones. Constraints
(10) and (11) record the minimal permissible arrival times at each node subject to the propagation of the fleet with
respect to time. Constraints (12) and (13) indicate that a node is visited at most once and prevent closed loops in the
same location, respectively. Finally, constraints (14)–(16) define the domain of all decision variables.

4. Methodology
Obtaining an optimal solution to the formulation in (1)–(16) becomes computationally challenging with the increase
in problem size. To overcome this challenge for medium-sized instances, we propose an exact branch-and-price (BP)
algorithm. BP is an iterative procedure that generates the most promising routes dynamically using column generation
and pricing in a branch-and-bound tree and finds the best solution that optimizes the problem. The pricing subproblem
for E-TSPMD is solved using DP with ng-route relaxation. ng-route relaxation was proposed in [12] and is proven to
be an effective approach in improving the computational speed of the BP method.

4.1 Master Problem
First, we present a set partitioning formulation of E-TSPMD as the master problem with the concept of a set of routes
R , that contains all ordered sequences of visits within the problem graph. Consider a binary decision variable λr
which indicates the selection of a route r ∈ R . Additionally, let air be the number of times node i is visited in path r
and mr be the sum of weights corresponding to node traversals. The set partitioning model is expressed as follows:

max ∑
r∈R

mrλr (17)

∑
r∈R

λr = 1 (18)

∑
r∈R

airλr ≤ 1 ∀i ∈ N (19)

λr ∈ {0,1} ∀r ∈ R (20)

The master problem (17)–(20) selects a single route that optimizes the objective function in (1) such that each node
is visited at most once. The linear programming relaxation of this formulation is referred to as the relaxed master
problem (RMP). In the BP procedure, instead of starting with all elements of R from the beginning, we simply
generate them as needed. Specifically, we initialize R with at least one route and solve the RMP. While the initial
route could be a solution with no node traversals (z∗ = 0), we employ a custom heuristic method to enhance the initial
solution. Subsequently, utilizing the dual variables obtained from the RMP solution, the pricing problem is solved
to find the most promising route for insertion into R . This iterative process continues until the pricing subproblem
fails to generate favorable routes with positive reduced costs for addition. At this stage, the RMP may or may not
produce a single route selection due to our subproblem relaxation. If the RMP solution is feasible (integer) to our
original problem, we terminate the BP tree. Otherwise, we execute branching on the current solution. One of our
branching strategies involves the computation of the total number of times a node is traversed in the fractional solution
and selects the node with the most fractional traversal. In addition, we perform branching based on the frequency of
node visits, i.e., the total number of times air is positive for a given node i and each r ∈ R such that λr = 1.

4.2 Pricing Subproblem
We use dynamic programming recursions to solve the pricing subproblem; however, it is noteworthy that the pric-
ing problem is nearly as challenging as the original problem. To alleviate the computational complexity, we add a
relaxation to the subproblem, which allows multiple visits to a location under the condition that, between any two con-
secutive visits, at least one other location is visited. Formally, we record an ng-set for a node that contains the nodes
visited in the recent steps, and traversal of such nodes is not permissible in the next step. Let Ni ⊆ N represent the
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neighborhood of node i ∈ N defined based on the maximum cardinality of the ng-set, a predetermined parameter. Note
that |ng|= n−1 indicates there are no repeated visits at any node. To boost the BP computational speed, dominance
rules are proposed in Proposition 1 and we utilize a simple heuristic for initial column generation at each node.

Let (ng, t, iT ,τ) represent the state of the system, where iT represents the current truck node, ng ⊆ NiT is the set of
locations that cannot be visited in the next propagation, t is the truck arrival time at the current node, and τ = (τd)d∈D
is a vector where τd records the total time drone d is on flight independent of the truck from node iT . Drone flight
time vector values are reset to zeros at the arrival of the truck at a node. Assume u0 and ui(∀i ∈ N) as the dual
variables associated with constraints (18) and (19) for the RMP, respectively. Our labeling algorithm finds a path with
the maximum positive reduced cost, i.e., max

j
{−u0 −∑

n
i=1 uiair +m j}. We initialize a function f (φ,0,0,0) = −u0 to

record the reduced cost and perform the label propagation from a given state as follows:

1. Add a truck arc: Given f (ng, t, iT ,τ), the truck is propagated to each location j ∈ N\{ng∪ {iT}} and the
reduced cost is calculated as f (N j ∩ (ng∪{iT}), t +maxd∈D τd + tT

iT j, j,0) = f (ng, t, iT ,(t1, . . . , tl))−u j +w j.

2. Add a drone arc: Propagate a drone d with minimum τd to j ∈ DiT \(ng ∪ {iT}), where DiT is the set of
drone eligible nodes from iT based on the flying range restriction. Calculate the reduced cost as f (NiT ∩ (ng∪
{ j}), t, iT ,(τ1, . . . ,τmin +2tD

iT j, . . . ,τl)) = f (ng, t, iT ,(τ1, . . . ,τmin, . . . ,τl))−u j +w j, where τmin = mind∈D τd .

Proposition 1. Let f 1 = f (ng1, t1, iT ,τ1) and f 2 = f (ng2, t2, iT ,τ2). For notational simplicity, we assume τ1 and τ2

are sorted in ascending order. f (ng1, t1, iT ,τ1) dominates f (ng2, t2, iT ,τ2) if one of the following conditions hold.

1. (a) f 1 > f 2, (b) t1 < t2, (c) τ1
l < τ2

l (d) ng1 ⊆ ng2

2. (a) f 1 ≥ f 2, (b) t1 ≤ t2, (c) τ1
d ≤ τ2

d ,∀d ∈ D (d) ng1 ⊆ ng2, and either

(i) f 1 > f 2, or (ii) t1 < t2, or (iii) τ1
d < τ2

d , for any d ∈ D, or (iv) ng1 ⊂ ng2.

3. f 2 +(n−∆( f 2))(maxi∈N wi)< f 1, where ∆( f 2) denotes the step size or number of locations served by f 2.

Proof. The proof for each of the three dominance rules is straightforward. f 1 dominates f 2 due to its more efficient
resource utilization. For the extensions of f 1 and f 2, the objective value of the pricing subproblem for f 1 is at least as
favorable as that of f 2.

5. Results
We consider a grid of size 100 x 100 km2 for the instance generation process. The node coordinates for the depot
and service locations are generated as random integers within the grid, and travel times are calculated based on the
Euclidean distance between nodes and the respective speeds of vehicles. Specifically, we set the speeds for the truck
and drones at 40 and 60 kilometers per hour, respectively. For a given problem size n, we randomly select the number
of homogeneous drones l ∈ {2,3,4}. To simulate real-world challenges during a calamity, we assume road blockages
with a probability of 0.2 and impose a substantial penalty on truck travel times across such obstructed roads. Priority
weights assigned to service nodes are randomly generated from the range [0,1]. Our algorithm is implemented in Julia

Table 1: A summary of results for BP in comparison to a commercial optimization solver

Exact Solver BP Gap

Problem Size Obj Time (sec) Obj Time (sec) (%)

8 2.50 0.42 2.50 0.22 0.00
9 3.55 3.23 3.55 0.68 0.00

10 3.39 7.09 3.39 2.48 0.00
11 3.44 7.40 3.44 0.28 0.00
12 3.97 35.76 3.97 32.73 0.00
13 4.53 38.01 4.57 21.28 -0.88
14 4.43 209.45 4.45 77.56 -0.45
15 4.67 185.13 4.75 18.81 -1.68

Average 3.81 60.81 3.83 19.26 -0.52
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1.7 and computational experiments have been performed on a computer running Windows 10 with Intel Core i7-10700
CPU @ 2.90 GHz processor and 16GB RAM. For the benchmark evaluation of the generated instances, we solve the
E-TSPMD formulation using Gurobi optimizer 11.0 with a time limit of 600 seconds for each instance.

Table 1 provides an overview of the average numerical results obtained from 16 instances of each problem size.
Throughout our experiments, we consistently set |ng| = 5. A negative gap in the results signifies the superior perfor-
mance of our method compared to the solver under the specified time limit. Notably, the table reveals the exponential
growth in computational complexity for the formulation with the increase in problem size, underscoring the substantial
computational advantages achieved by our BP method while finding the optimal solutions.

6. Conclusions
In this research, we address the crucial challenge of optimizing humanitarian aid distribution in emergency scenarios
using a mixed fleet of a truck and multiple drones. The truck serves as a moving depot for multiple drones, thus
enhancing the efficiency of the fleet. Our objective is to maximize the coverage of locations that require service based
on priority weights and generate routing decisions for the mixed fleet. To enhance the solution procedure, we devise a
tailored branch-and-price method and obtain the optimal routing decisions for medium-sized instances. The numerical
results demonstrate the computational superiority of our proposed algorithm over a commercial optimization solver.
A potential future improvement in the algorithm lies in the incorporation of cut-generation schemes to enhance our
BP method. Furthermore, the operational scenario in an emergency can be improved by considering more vehicles.
By using a collaborative system of multiple trucks and drones, the coverage of locations under time restrictions can be
improved.
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