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Abstract

We consider a road-ban problem in hazardous materials (hazmat) transportation. We formu-

late the problem as a network design problem to select a set of closed road segments for hazmat

traffic and obtain a bi-level optimization problem. While modeling probabilistic route-choices of

hazmat carriers by the random utility model (RUM) in the lower level, we consider a risk-averse

measure called conditional value-at-risk (CVaR) in the upper level, instead of the widely used

expected risk measure. Using RUM and CVaR, we quantify the risk of having hazmat accidents

and large consequences, and design the network policy for road-bans accordingly. While CVaR

has been used in hazmat routing problems, this paper is the first attempt to apply CVaR in risk

averse hazmat network design problems considering stochastic route-choices of hazmat carriers.

The resulting problem is a mixed integer nonlinear programming problem, for which we devise

a line search approach combined with Benders decomposition. We demonstrate the efficiency

of the proposed computational method with case studies. The average computation time for a

network with 105 nodes and 268 arcs is 3 hours. Commercial solvers are inadequate to solve

this problem, because the optimality gap is 99.9% after 24 hours just for a linear subproblem.

By applying CVaR to the route-choice behavior of hazmat carriers, we protect the road network

from undesirable route-choices that may lead to severe consequences. We define the Value of

RUM-CVaR Solutions (VRCS) over the deterministic model based on shortest-path problems

and the expected risk measure. Our case study shows that VRCS can range from 4.9% to 64.1%

depending on the probability threshold used in the CVaR measure.

Keywords: transportation; hazardous materials; network design; conditional value-at-risk;

Benders decomposition

1 Introduction

Hazardous materials (hazmat) are defined as materials that can pose an unreasonable threat to

the public and the environment (Federal Motor Carrier Safety Administration, 2016) and about
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1 million shipments of hazmat crisscross the United States every day. While the average nature

of hazmat accidents on highways is not very different from non-hazmat cargo accidents, hazmat

accidents can bring in catastrophic consequences. The average cost for hazmat accident on na-

tion’s highways is about $414,000 per accident, while non-hazmat cargo accidents are averaged

about $340,000 per accident (Federal Motor Carrier Safety Administration, 2001). When hazmat

is released at the accident, the average cost increases to $536,000. Furthermore, if a fire or an

explosion is involved, the average cost of hazmat accidents increases to $1,150,000 and $2,070,000,

respectively. An extreme example is an hazmat accident in 2017 causing damages of $4,273,606 at

Highway 410, Detroit, TX (Pipeline and Hazardous Materials Safety Administration, 2017). Haz-

mat accidents exhibit the characteristics of the low-probability high-consequence events. Reducing

the impact of hazmat accidents via risk-averse approaches is important for the public safety and

the environment protection.

On account of the large amount of hazmat transported and high accident consequences of

hazmat trucks via roads, the government and transportation agencies often consider road-ban

policies to protect the public and the environment from severe accident consequences of hazmat.

In a road-ban policy for hazmat transportation, the government can close certain road segments

for hazmat traffic. The decision-making problem of determining which road segments to close is

called a hazmat network design problem (Verter and Kara, 2008; Sun et al., 2016). In addition,

the government can design toll policies to regulate hazmat transportation (Marcotte et al., 2009;

Esfandeh et al., 2016). While toll pricing can provide more flexible regulatory methods, it is easier

to implement and modify road-ban policies without needs of additional toll-collection facilities. The

current registry of hazmat route restriction on the U.S. highways is provided by the Federal Motor

Carrier Safety Administration (2018).

For hazmat network design problems, modeling and predicting route choices of carriers is essen-

tial to determine the risk associated with transporting hazmat. Typically, hazmat network design

problems for road-ban are formulated as bi-level optimization problems (Kara and Verter, 2004;

Erkut and Gzara, 2008; Gzara, 2013; Fontaine and Minner, 2018; Sun et al., 2016, 2018). The

upper level selects a set of road segments to be closed aiming at minimizing the risk level of hazmat

transportation in the network. The lower level predicts the carriers’ routes of transporting hazmat

from origin-destination (OD) pairs. Most existing studies on hazmat transportation utilize the

shortest path problem to model the route choices (Kara and Verter, 2004; Erkut and Gzara, 2008;

Gzara, 2013; Fan et al., 2015; Esfandeh et al., 2017; Fontaine and Minner, 2018). In the lower-level

shortest-path problem, the cost of carriers can be the travel time or a combination of the travel

time and risk (List et al., 1991; Taslimi et al., 2017). There are, however, other factors that hazmat

carriers consider for route choices. According to a hazmat routing survey (Battelle, 2006), hazmat

carriers consider various factors such as tunnels, bridges, the population exposure, the state of

regulations, and the directness of route, among others, to determine the route. This indicates that

there would be factors that are unobserved by the government or a central authority. Even when

multiple factors are modeled, the weights among various factors are difficult to determine.
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Probabilistic approaches for modeling unobservable factors in route choice decision-making are

abundant. The most popular model is arguably the Random Utility Model (RUM), which directly

relates the probability of a route choice with the its utility. McFadden (1975) first proposed RUM

to model general choice behaviors. In RUM, it is assumed that users’ utility depends on both a fixed

effect and a random observation error. Williams (1977) proposed the Multinomial Logit (MNL)

model by assuming that the observation errors are from Gumbel distribution as a system evaluation

criterion. To model route choices of drivers in urban road networks, Daganzo and Sheffi (1977)

presented the Multinomial Probit (MNP) model assuming that the observation errors are normally

distributed. MNP model introduces a lack of tractability for researchers to perform further analysis,

because it cannot provide an explicit formula which relates choice probabilities and known factors.

The simple explicit form of MNL makes it incorporable with further analysis while describing users’

stochastic behavior. By using MNL in transportation, the route choice probabilities can directly

relate to route costs. For general freight movements, RUM and its variants have been used to model

route choices using GPS tracking data (Quattrone and Vitetta, 2011; Hess et al., 2015).

Despite the popularity and effectiveness of RUM in modeling probabilistic route choices of

drivers, RUM has not been used in the hazmat transportation problems, in particular hazmat

network design problems. To take account of unobservable factors in drivers’ route choices, Sun et al.

(2018) proposed a suboptimal decision-making model based on satisficing and robust optimization

for hazmat network design problems. This paper provides the first hazmat network design model

considering probabilistic route choices.

We illustrate the importance of considering probabilistic route choices via a simple example

with three arcs. We need to transport hazmat from node 1 to node 2. The data of travel cost and

risk for three arcs are as follows:

Arc Travel Cost Hazmat Risk

1 10 1.0

2 5 1.1

3 11 50.0

Assume that we can close only one arc. The results of road-ban with the shortest-path problem

(SPP) and probabilistic route choice are shown in Figure 1. Arc 1 is the only minimum risk arc

(path) and the travel cost of arc 1 is higher than arc 2. With SPP to predict the hazmat routing,

the optimal solution is to close arc 2. It assumes that hazmat carriers will only follow arc 1, because

it provides the shortest path after closing arc 2. Note that the travel costs of arc 3 and arc 1 are

very close, while arc 3 has a large risk of 50. In reality, hazmat carriers can choose arc 3 escalating

the estimated risk that SPP captures. Under probabilistic route choice models, hazmat carriers

are assumed to choose paths with some probabilities based on utilities, which can be represented

by travel cost or other observed and unobserved factors. The optimal solution with probabilistic

route choice is to close arc 3. Since the risk of arc 2 is 1.1 and the risk of arc 1 is 1, the risk for this
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Figure 1: Road banning with SPP and probabilistic route choice models
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Figure 2: VaR and CVaR for a network only including a path (Su et al., 2017)

network is still around 1 considering all available paths. Illustrated by this example, the road-ban

solution with probabilistic route choice can be more preferable than SPP, which motivates this

paper.

The property of low probabilities but extreme accident consequences for hazmat transportation

motivates researchers to consider an averse risk measure when quantifying the risk to avoid catas-

trophic consequences (Erkut and Ingolfsson, 2000). Most hazmat transportation network designs

consider simple risk measures such as the expectation of accident consequences. In risk manage-

ment, value-at-risk (VaR), also known as α-quantile, once was commonly used to measure risk

ignoring the left tail of loss distribution. Its lack of subadditivity and convexity, as discussed by

Artzner et al. (1997, 1999), however, leads researchers’ attention to a coherent measure: conditional

value-at-risk (CVaR). While both VaR (Duffie and Pan, 1997) and CVaR (Rockafellar and Uryasev,

2000) have been popularly used in financial portfolio optimization problems, they have also been

applied to hazmat routing (Kang et al., 2014; Toumazis et al., 2013; Toumazis and Kwon, 2013,

2016; Hosseini and Verma, 2018).

Figure 2 shows the mean value, VaR, CVaR, and the maximum loss value for the random risk

of a typical path in a hazmat transportation network. While VaR only captures a quantile, CVaR
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Table 1: Have risk-averse approaches been used in hazmat transportation problems? RO represents
robust optimization. The ‘Data’ column represents uncertainty or inaccuracy in data for hazmat
accident probability and consequence in each road segment.

Source of Uncertainty

Paper Route-Choice Accident Consequence Data Context

Erkut and Ingolfsson (2000) - Max Loss - Routing
Kang et al. (2014) - VaR - Routing
Toumazis et al. (2013) - VaR/CVaR - Routing
Kwon et al. (2013) - - RO Routing
Toumazis and Kwon (2016) - CVaR RO Routing

Sun et al. (2016) - - RO Network Design
Sun et al. (2018) RO - - Network Design
This Paper CVaR CVaR - Network Design

considers the expected risk (ER) beyond VaR; hence CVaR provides more risk-averse approach for

mitigating tail risks. Both VaR and CVaR can be flexibly determined between the mean value and

the maximum loss, depending on the probability threshold value α.

Our main contribution is that we introduce a risk-averse CVaR measure to both probabilistic

behavior of hazmat carriers and probabilistic consequences from hazmat accidents in hazmat net-

work design problems. To the best of our knowledge, this paper is the first attempt to mitigate both

factors via an averse risk measure. While RUM is used in some urban network design problems

(Davis, 1994; Liu and Wang, 2015), this is the first time to incorporate RUM in hazmat transporta-

tion network design problems. CVaR is an averse risk measure that focuses on high consequences.

While CVaR has been used in hazmat routing, this is the first time for the hazmat network design

problem. The CVaR measure captures high consequences stemming from probabilistic route choices

of hazmat carriers as well as the nature of hazmat accidents.

Table 1 further highlights our main contribution and shows the differences between our work

and other available risk-averse approaches in the literature. Risk-averse approaches focus on three

sources of uncertainty in the literature: route-choice, accident consequence, and data. For uncertain

route choices of hazmat carriers, Sun et al. (2018) considered their worst-case behavior using the

notion of bounded rationality to derive a robust network design, while the ER as a risk-neutral

measure was used to evaluate the risk from hazmat accidents. To overcome the limitation in the

risk-neutral ER measure of accident consequences, however, VaR and CVaR have been used for

hazmat routing (Toumazis et al., 2013; Toumazis and Kwon, 2016). In this paper, using CVaR, we

consider both sources of uncertainty in route choices and accident consequences under the network

design setting for the first time.

Most operations research approaches for hazmat routing assume the availability of two critical

data: accident probability and accident consequence. In practice, those data are rough estimates,

usually computed from the national average, if not unavailable. To manage risk from such data
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uncertainty, robust optimization approaches have been used (Kwon et al., 2013; Toumazis and

Kwon, 2016; Sun et al., 2016). In this paper, however, we assume that hazmat accident probabilities

and consequences at each road segment are available. Considering all three sources of uncertainty

will clearly be a next step.

We analyze the proposed CVaR minimization problem for hazmat network design theoretically

and develop an efficient algorithm that combines line search with Benders decomposition to solve

the problem. In addition, we provide case studies on realistic road networks to confirm the validity

of CVaR concept incorporating probabilistic-route choices and the practicability of the proposed

algorithms.

2 A Deterministic Model for Hazmat Network Design

In this section, we review a deterministic model for hazmat transportation network design. Later,

we extend the deterministic model to consider CVaR and uncertain route choices.

Let us consider a transportation network G = (N ,A) where N is the set of nodes and A is

the set of arcs. In a multi-commodity transportation network, let S denote the set of shipments.

In practice, S specifies the OD pair, and the type of hazmat. Let N s be the demand of shipment

s ∈ S that represents the number of trucks carrying hazmat. Each arc (i, j) is known with the

travel cost tij , the accident probability pij , and the accident consequence csij for each shipment

s ∈ S. Accidents caused by various kinds of hazmat can have different influences on a road network

making it possible that different shipments can have different accident consequences. Let Ks be

the set of available paths for shipment s ∈ S.

To transport shipment s ∈ S, the approximated risk distribution for a single demand (truck)

along path k ∈ Ks can be written as follows (Jin and Batta, 1997):

Pr{Rsk = x} ≈


1−

∑
(i,j)∈Ak

pij if x = 0

pij if x = csij for some (i, j) ∈ Ak
(1)

where Ak is the set of arcs for path k.

One of the most common approaches that regulators use to measure the risk is expected value of

consequences for potential hazmat truck accidents. It is a common assumption that hazmat carriers

travel along the shortest path. We also assume that hazmat carriers only follow the shortest path in

the deterministic model for hazmat transportation network design. Erkut and Gzara (2008) solved

a bi-level hazmat transport network design problem based on an arc-based formulation. Verter and

Kara (2008) proposed a path-based approach for hazmat transport network design by simplifying

the shortest path problem with the closest assignment constraints. Similarly, the deterministic
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path-based hazmat transportation network design is formulated as follows:

min
y,z

∑
s∈S

∑
k∈Ks

∑
(i,j)∈A

N spijδ
sk
ij c

s
ijγ

sk (2)

s.t. zsk ≥
∑

(i,j)∈A

δskij yij −
∑

(i,j)∈A

δskij + 1, ∀s ∈ S,∀k ∈ Ks (3)

zsk ≤ yij − δskij + 1, ∀s ∈ S,∀k ∈ Ks, ∀(i, j) ∈ A (4)∑
k∈Ks

zsk ≥ 1, ∀s ∈ S (5)

γsk ≤ zsk, ∀s ∈ S, k ∈ Ks (6)

γsk ≥ zsk −
k−1∑
j=1

zsj , ∀s ∈ S, k ∈ Ks (7)

∑
(i,j)∈A

(1− yij) ≤ N (8)

γsk, zsk binary , ∀s ∈ S, ∀k ∈ Ks (9)

yij binary , ∀(i, j) ∈ A (10)

where y is the design variable, z is the path availability variable and γ is the route-choice variable.

If arc (i, j) is open for transportation of hazmat, yij = 1; otherwise, yij = 0. If path k is available for

transportation of shipment s ∈ S, zsk = 1; otherwise, zsk = 0. If path k is chosen for transportation

of shipment s ∈ S, γsk = 1; otherwise, γsk = 0. In addition, δskij is the parameter to define a path.

If δskij = 1, arc (i, j) is on path k for shipment s; otherwise, δskij = 0.

In the single-level problem by a path-based formulation, the objective minimizes the ER as (2)

shows. Path-based network design constraints are defined by (3)–(10). Constraints (3) and (4)

define path availability for shipments. A path is available only when all arcs on the path are open.

If there exist closed arcs on a path, the path is out of service. In addition, at least one path for a

shipment is available to ensure transportation as (5) shows. Constraints (6) state that the chosen

path for shipments must come from available paths. All paths for a shipment are sorted from 1

to k by lengths meaning that the length of path 1 for any shipment has shortest length among all

possible paths. Constraints (7) guarantee that the available path with the smallest index is used

for each shipment. Because of the sorted path data, (7) is equivalent to the shortest path problem

in a path-based context. Due to the cost associated with closing arcs, (8) restricts the number of

closed arcs. Constraints (9) and (10) are binaries for decision variables. The path-based hazmat

transportation network design problem is a mixed-integer linear programming (MILP) problem.

3 Hazmat Risk Modeling with Probabilistic Route Choices

There are works that model the risk distribution for a hazmat transportation network by using

shortest path problems. The route choice behavior of hazmat carriers, however, is not only resulted
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from known factors such as travel cost (Ben-Akiva et al., 1984) thus making it possible that the

shortest path problem (SPP) and other hazmat routing optimization may fail to predict the routing

decision. To consider the uncertainty of route choices, probabilistic route choice models are used. In

probabilistic route choice models, hazmat carriers choose an available path with a probability. The

risk distribution for a hazmat transportation network is redefined to incorporate with probabilistic

route choices. In this section, probabilistic route choice models are reviewed and utilized in risk

distribution for hazmat transportation network.

3.1 Random Utility and Probabilistic Route Choice Models

RUM assumes that the utility of a choice that decision makers perceive comes from two sources:

a deterministic (observable) component and a random (unobservable) component (Dial, 1971). In

the context of route choices, the utility U sk of path k for shipment s ∈ S is defined by:

U sk = −θstsk + ξsk (11)

where tsk is the generalized cost of observable attributes, θs is a positive parameter, and ξsk is

a random variable for unobservable attributes. To consider both travel cost and risk in hazmat

routing, the utility can also be formulated as:

U sk = −θs(tsk + β · risksk) + ξsk (12)

Usually, tsk is travel time. It is assumed to be additive with respect to arc costs.

tsk =
∑

(i,j)∈A

tijδ
sk
ij (13)

where tij is the generalized travel cost associated with arc (i, j), and δskij = 1 if arc (i, j) is on path

k for shipment s ∈ S and 0 otherwise. Note that risksk can be the expected risk of path k for

shipment s ∈ S or any other risk measure depending on their attitudes towards risk.

Different distributions for random components ξsk result in various forms of probabilities πsk

of choosing path k ∈ Ks for shipment s ∈ S. By assuming that the random component ξsk are

independently and identically from Gumbel distribution, the MNL model can be obtained as follows

(Ben-Akiva et al., 1985):

πsk =
ρsk∑
l∈Ks

ρsl
(14)

ρsk = e−θ
s(tsk+β·risksk) (15)

for all s ∈ S, k ∈ Ks.
There exist other logit-type models with different formulations of ρsk (Cascetta et al., 1996;

Ben-Akiva and Bierlaire, 1999; Ramming, 2001; Prashker and Bekhor, 2004). In C-logit model,
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for example, a commonality factor is introduced while a path size is defined in path-size logit

model. Path size is calculated based on the length of arcs within a path and the relative lengths of

paths that share an arc. Both the commonality factor and the path size are used to measure the

similarity among paths. They are used to adjust the utilities of paths and address issues caused by

overlapping arcs. To obtain the commonality factor and the path size, however, we need to know

the path set Ks for shipment s ∈ S beforehand. Therefore, C-logit model and path-size model are

computationally expensive to be applied in the hazmat network design problem. We use MNL of

the form (14)–(15) to model the probabilistic route choices.

3.2 The Risk Distribution for Hazmat Transportation

In this section, the risk distribution for hazmat transportation is defined based on the probabilistic

route choice model. Various shipments s ∈ S can have different accident consequences. Let Ak

denote the set of arcs for path k ∈ Ks to transport shipment s ∈ S. It is assumed that hazmat

carriers operate independently. Among N s demands of hazmat for shipment s ∈ S, demand (truck)

1 and demand (truck) 2 have the same risk distribution along path k ∈ Ks. Choosing path k ∈ Ks
to transport shipment s ∈ S , the risk distribution for n-th truck can be approximated as follows

(Jin and Batta, 1997):

Rskn =


0 with probability 1−

∑
(i,j)∈Ak

pij

csij with probability pij for (i, j) ∈ Ak
(16)

When there are multiple paths available for each truck to transport shipment s ∈ S, we as-

sume that a path is chosen with the probability described by the probabilistic route choice model

introduced in Section 3.1. Let Rsn be the random risk variable for n-th truck to transport s ∈ S, dis-

tributed among all available paths in Ks. Under the consideration of available paths, the probability

of taking risk x of shipment s ∈ S by n-th truck is:

Pr

[
Rsn = x

]
=
∑
k∈Ks

Pr

[
Rsn = x | path k chosen

]
Pr

[
path k chosen for shipment s

]
(17)

=
∑
k∈Ks

Pr

[
Rskn = x

]
πsk (18)

where πsk is given in (14). Hence, Rsn is distributed as follows:

Rsn =


0 with probability 1−

∑
k∈Ks

∑
(i,j)∈Ak

πskpij

csij with probability pij
∑
k∈Ks

πskδskij for (i, j) ∈
⋃
k∈Ks

Ak
(19)

where δskij is the incidence parameter for s ∈ S, k ∈ Ks, (i, j) ∈ A. If δskij = 1, arc (i, j) is on
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path k for shipment s; if δskij = 0, arc (i, j) is not on path k for shipment s. The risk for a given

transportation network comes from all demands among all shipments. Therefore, the risk for a

transportation network is:

R =
∑
s∈S

Ns∑
n=1

Rsn (20)

Since different trucks are operated separately transporting multiple units of hazmat, we can assume

that the risks for multiple units of hazmat among all shipments are independently distributed.

According to the North America data on hazmat transportation accident statistics, the probabilities

of an accident to take place are very small ranging from 10−8 to 10−6 (Abkowitz et al., 1992).

Utilizing

pijpi′j′ ≈ 0 (21)

for all (i, j), (i′, j′) ∈ A, we can obtain the probability that the risk variable becomes 0 as follows:

Pr

[
R = 0

]
=
∏
s∈S

Ns∏
n=1

Pr

[
Rsn = 0

]

=
∏
s∈S

Ns∏
n=1

(
1−

∑
k∈Ks

∑
(i,j)∈Ak

πskpij

)

≈
∏
s∈S

(
1−N s

∑
k∈Ks

∑
(i,j)∈Ak

πskpij

)
= 1−

∑
s∈S

∑
k∈Ks

∑
(i,j)∈Ak

N sπskpij (22)

and for each csij : s ∈ S, (i, j) ∈ A:

Pr

[
R = csij

]
= Pr

[∑
s∈S

Ns∑
n=1

Rsn = csij

]

≈
Ns∑
n=1

Pr

[
Rsn = csij

]

=

Ns∑
n=1

pij
∑
k∈Ks

πskδskij (23)

=
∑
k∈Ks

N sπskpijδ
sk
ij (24)

Therefore, the approximated risk distribution for hazmat transportation network is

R =


0 with probability 1−

∑
s∈S

∑
k∈Ks

∑
(i,j)∈Ak

N sπskpij

csij with probability
∑
k∈Ks

N sπskpijδ
sk
ij for (i, j) ∈ A, s ∈ S.

(25)
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4 The CVaR Minimization Model for Hazmat Network Design

In this section, a CVaR minimization network design model considering drivers’ probabilistic route

choices is proposed. It is well-known that CVaR is a general, coherent and risk-averse measure

(Rockafellar and Uryasev, 2002). For any random loss X, the VaR and CVaR are introduced

in Definitions 1 and 2, respectively. CVaR can also be redefined as an optimization problem as

Theorem 1 shows.

Definition 1 (VaR Measure). The value-at-risk (VaR) is defined as follows:

VaRp(X) = inf{x : Pr[X ≤ x] ≥ p} (26)

where p ∈ (0, 1) is a threshold probability.

Definition 2 (CVaR Measure). The conditional value-at-risk (CVaR) is defined as follows:

CVaRα(X) =
1

1− α

∫ 1

α
VaRp(X) dp (27)

for a threshold probability α ∈ (0, 1) where VaRp(X) is shown in Definition 1.

Theorem 1 (Rockafellar and Uryasev, 2002). For r ∈ R, let us define

Φα(r;X) = r +
1

1− α
E[X − r]+,

where [x]+ = max(x, 0). Then the CVaR measure is equivalent to:

CVaRα(X) = min
r∈R

Φα(r;X) (28)

4.1 Route-Choice Probabilities Depending on Network Design

To introduce the CVaR measure for hazmat transportation, the route-choice probabilities depending

on network design are clarified. Let y be the path-based network design variables and z be the path

availability variables here. If arc (i, j) is open for transportation of hazmat, yij = 1; otherwise,

yij = 0. If path k is available for transportation of shipment s ∈ S, zsk = 1; otherwise, zsk = 0.

The route-choice probabilities are formulated as follows:

zsk ≥
∑

(i,j)∈A

δskij yij −
∑

(i,j)∈A

δskij + 1, ∀s ∈ S, ∀k ∈ Ks (29)

zsk ≤ yij − δskij + 1, ∀s ∈ S,∀k ∈ Ks, ∀(i, j) ∈ A (30)∑
k∈Ks

zsk ≥ 1, ∀s ∈ S (31)

∑
(i,j)∈A

(1− yij) ≤ N (32)
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πsk =
ρskzsk∑
l∈Ks

ρslzsl
, ∀s ∈ S, ∀k ∈ Ks (33)

zsk binary , ∀s ∈ S, ∀k ∈ Ks (34)

yij binary , ∀(i, j) ∈ A (35)

Equations (29) and (30) determine the path availabilities, similarly as in Section 2. Equation (31)

constrains that there exists at least one path for shipment s ∈ S. Equation (32) states that at most

N arcs can be closed in the network.

Hazmat carriers, however, do not necessarily choose the shortest path or follow the optimal

path of multi-objectives which are still within SPP in all cases. To model the uncertainty of driver

behaviors, probabilistic route choice model is introduced. In the proposed model, we assume that

carriers choose paths among all available paths by estimating their utilities. Then, we use RUM

to model carriers’ probabilistic behavior and MNL to further simplify the stochastic route-choice.

Equation (33) shows the route-choice probabilities among all available paths. If path k ∈ Ks is

unavailable for shipment s ∈ S, namely zsk = 0, its route-choice probability is 0; otherwise, the

route-choice probability can be given by (14) and (15).

4.2 The CVaR Minimization Model

This section shows the CVaR minimization model for hazmat network design. The distribution of

risk introduced in Section 3.2 and the route-choice probabilities in Section 4.1 can model the CVaR

minimization network design problem. Let

Φα(r;π) = r +
1

1− α
E [R− r]+ (36)

≈ r +
1

1− α

{(
1−

∑
s∈S

∑
k∈Ks

∑
(i,j)∈Ak

N sπskpij

)
[0− r]+

+
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+}
(37)

≈ r +
1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+
(38)

We use the optimization of CVaR in Theorem 1 to define the CVaR measure in hazmat transporta-

tion network,

CVaRα = min
r∈R+

Φα(r;π) ≈ min
r∈R+

[
r +

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+ ]
. (39)

Therefore, the CVaR minimization model is,

min
π∈Ω

CVaRα = min
π∈Ω,r∈R+

Φα(r;π) (40)
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≈ min
π∈Ω,r∈R+

[
r +

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+ ]
(41)

where Ω can be defined by

Ω = {π : ∃y, z such that (29)–(35) hold}. (42)

4.3 The Model Analysis

The CVaR minimization model for hazmat transportation network design (41) is a mixed integer

nonlinear programming problem. If a network is complicated with a large demand of shipments,

it becomes very difficult to solve the problem. In the proposed model, variable r only has an

impact on the objective function and does not exist in constraints. Because the objective function

is linear with r within each interval between two consecutive csij values, the optimal r value lies in

Θ = {0} ∪ {csij : ∀(i, j) ∈ A, s ∈ S} (Toumazis et al., 2013). The CVaR minimization model (41) is

reformulated as:

min
r∈Θ

fα(r) (43)

where

fα(r) = min
π∈Ω

Φα(r;π).

Given a large network with various kinds of hazmat, set Θ becomes large. To obtain the optimal

solution of the proposed model, we should solve a large number of fα(r). If some r values can be

eliminated without solving optimization problems, the computation can be more efficient. Analysis

is conducted to explore which r values can be eliminated from being optimal solutions for the

proposed model. Let

0 = r0 ≤ r1 ≤ r2 ≤ ... ≤ rq−1 ≤ rq ≤ rq+1 ≤ ... ≤ rMA (44)

where rq is the q-th smallest value in {csij : ∀(i, j) ∈ A, s ∈ S} and MA is the number of unique

values in {csij : ∀(i, j) ∈ A, s ∈ S}. For each q = 0, 1, · · · ,MA − 1, we have

Φα(rq+1;π)− Φα(rq;π) = rq+1 +
1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − rq+1

]+
− rq −

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − rq

]+
= rq+1 − rq

− 1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

csij≥rq+1

N sπskpijδ
sk
ij (rq+1 − rq)
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= (rq+1 − rq)
(

1− 1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

csij≥rq+1

N sπskpijδ
sk
ij

)
. (45)

Theorem 2. Consider an index q ∈ {0, 1, . . . ,MA} such that the following condition holds:

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

csij≥rq+1

N spijδ
sk
ij ≤ 1 (46)

Then we can show that

Φα(rq;π) ≤ Φα(rq+1;π) (47)

for all π ∈ Ω. Further

fα(rq) ≤ fα(rq+1) ≤ · · · ≤ fα(rMA) (48)

Proof of Theorem 2. Given condition (46), we have

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

csij≥rq+1

N sπskpijδ
sk
ij ≤ 1

for any π, since πsk ∈ [0, 1] is the probability associated with path k ∈ Ks for shipment s ∈ S.

Based on (45), for any route-choice probabilities π ∈ Ω

Φα(rq;π) ≤ Φα(rq+1;π). (49)

Note that

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

csij≥rMA

N sπskpijδ
sk
ij ≤ · · · ≤

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

csij≥rq+2

N sπskpijδ
sk
ij

≤ 1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

csij≥rq+1

N spijδ
sk
ij ≤ 1. (50)

Consequently, we obtain

Φα(rq;π) ≤ Φα(rq+1;π) ≤ · · · ≤ Φα(rMA ;π). (51)

Let πq be an optimal solution for fα(rq) = minπ∈Ω Φα(rq;π); that is fα(rq) = Φα(rq;πq). Then, we

have

fα(rq) = Φα(rq;πq) ≤ Φα(rq;πq+1) ≤ Φα(rq+1;πq+1) = fα(rq+1). (52)

Similarly,

fα(rq) ≤ fα(rq+1) ≤ · · · ≤ fα(rMA). (53)
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This completes the proof.

Instead of considering all r values in Θ, we can narrow the searching range for r if there exist r

values satisfying (46). Let q̂ be the smallest index to satisfy (46). By Theorem 2, it is proved that

fα(rq̂) ≤ fα(rq̂+1) ≤ · · · ≤ fα(rMA); thus excluding r ∈ {q̂ + 1, · · · , rMA} to search the minimal

fα(r). The CVaR minimization model (43) can be rewritten as:

min
r∈{r0,r1,··· ,rq̂}

fα(r) (54)

If (46) is not satisfied for any q, every r ∈ Θ should be considered.

5 A Computational Scheme for the CVaR Minimization Model

In this section, an efficient computational scheme to solve the CVaR minimization model for hazmat

transportation network design is proposed. The proposed CVaR minimization model for network

design is a nonlinear optimization model. Based on (43), the proposed network design model can

be decomposed into two stages. At the first stage, we search r within a finite set. At the second

stage, fα(r) is solved to yield the network design solution.

fα(r) =

{
min
π,y,z

[
r +

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+ ]
subject to (29)–(35).

}
(55)

Because of the nonlinearity to link the route-choice probabilities and path availabilities in (33), we

linearize as follows:∑
l∈Ks

ρslφskl = ρskzsk, ∀s ∈ S, ∀k ∈ Ks (56)

φskl ≤ zsl, ∀s ∈ S, ∀k ∈ Ks,∀l ∈ Ks (57)

φskl ≥ −(1− zsl) + πsk, ∀s ∈ S, ∀k ∈ Ks,∀l ∈ Ks (58)

0 ≤ φskl ≤ πsk, ∀s ∈ S, ∀k ∈ Ks,∀l ∈ Ks. (59)

The parameter ρ can be computed with (15). Then, fα(r) is reformulated as a MILP problem.

Despite the fact that we may use Theorem 2 to reduce the searching set for r variable, it is

still time-consuming to compute fα(r) given all potential r values if the scale of a network is large.

Finding the optimal r can be accelerated by developing an efficient search scheme which depends

on fα(r). Besides, solving fα(r) is very difficult when many path alternatives are considered for a

complicated network. Sometimes, it is even impractical to obtain a good feasible solution for fα(r).

We propose a line search with mapping to obtain optimal r as shown in Section 5.1 and show

that Benders decomposition can generate upper and lower bounds of MILPs for given r values thus

solving the fα(r) problem in Section 5.2. Generating useful lower bounds by Benders decomposition,

however, costs large computation efforts while good upper bounds can be obtained after a certain
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number of iterations. In this case, we terminate the algorithm by some criteria and gain the best

feasible solutions from upper bounds.

5.1 A Line Search with Mapping

To search the optimal r value for the proposed network design model, we only consider a narrowed

range of values checked by Theorem 2. Initially, we can think of obtaining an optimal solution

for network design problem by visiting every value in Θ. If Θ involves a large number of values,

the computation for the problem can be time-consuming because we need to solve a large number

of MILPs. A searching mechanism for r based on line search methods are proposed in order to

solve the problem efficiently. We use the Golden Section method. When it is applied to a strictly

quasiconvex function, the Golden Section method can find a global minimal solution. The essence

of the Golden Section method is to reuse one searching point in previous iteration and compare

with an updated point derived by the golden ratio to reduce computations. Note that the golden

ratio is 0.618.

We use the same idea to develop a discrete version of the Golden Section method, which only

evaluates a limited number of r values in Θ. Usually, a line section method minimizes a nonlinear

optimization problem over the interval [a0, b0]. The optimal r value lies in Θ, so a0 = 0 and b0

would be the smallest r value satisfying (46) by Theorem 2.

A line search algorithm usually copes with a continuous variable from a certain interval. In

the proposed model, optimal r value is from a finite set. We map the updated point in iterations

to value in the finite set using a simple mechanism. The simple mechanism can guarantee the

correctness of searching interval. The procedures for searching optimal r for the proposed model

are shown in Algorithm 1.

5.2 Benders Decomposition for fα(r)

The line search for r highly depends on obtaining optimal objective values for MILPs. As the size of

the network increases, the computation time for solving fα(r) given r goes up exponentially. When

we solved fα(r) given r with CPLEX solver of version 12.6 for the Ravenna network (Bonvicini and

Spadoni, 2008; Erkut and Gzara, 2008), which has 105 nodes, 134 undirected arcs, 31 OD pairs, and

50 available paths for each OD pair, the optimality gap is 99.9% after 24 hours. This motivates us

to develop an efficient algorithm solving fα(r) given r. We can benefit from generating upper and

lower bounds for fα(r) and solving the problem iteratively rather than directly solves a large MILP

with CPLEX. Seen from the structure of the MILPs, it is found that fα(r) can be decomposed

into: (1) optimizing network design (2) analyzing probabilities assigned for paths.

Benders decomposition is a popular algorithm framework to deal with complicating variables

and large-scale optimization problems in which variables and constraints are decomposed into a

master problem and subproblems. The algorithm employs cutting-planes procedures for the master

problem based on subproblems until it converges. There are two categories of cuts in Benders

composition. When a subproblem reaches an optimal solution but its optimal objective value is
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Algorithm 1 A line search with mapping

1: Initialization: Check the largest q (q∗) which satisfies (46). Let k ← 0 and ak ← 0, bk ← rq∗ .
λk = ak + (1 − ϕ)(bk − ak) and µk = ak + ϕ(bk − ak). Find the left-closest value to λk (λleft)
and the right-closest value to µk (µright) among Θ. Let λk = λleft, µk = µright and

fα(λk) = minπ∈Ω Φα(λk;π)

fα(µk) = minπ∈Ω Φα(µk;π)

2: Convergence check: If ak = rq and bk = rq or rq+1 for any q = 0, 1, · · · , (q∗ − 1), go to
Step 6; otherwise, continue estimating fα(λk) and fα(µk). If fα(λk) > fα(µk), go to Step 3; if
fα(λk) ≤ fα(µk), go to Step 4.

3: Reuse µk: Find the right-closest value to λk in Θ (λright) and let ak+1 = λright and bk+1 = bk.
If µk − ak+1 ≤ bk+1 − µk, let

λk+1 = µk, fα(λk+1) = fα(µk)

µk+1 =
µk+bk+1

2 .

Find the right-closest value to µk+1 in Θ (µright) and let µk+1 = µright. Evaluate fα(µk+1).
If µk − ak+1 > bk+1 − µk, let

µk+1 = µk, fα(µk+1) = fα(µk)

λk+1 =
ak+1+µk

2 .

Find the left-closest value to λk+1 in Θ (λleft) and let λk+1 = λleft. Evaluate fα(λk+1).
Go to Step 5.

4: Reuse λk: Find the left-closest value to µk in Θ (µleft) and let ak+1 = ak and bk+1 = µleft.
If λk − ak+1 ≤ bk+1 − λk, let

λk+1 = λk, fα(λk+1) = fα(λk)

µk+1 =
λk+bk+1

2 .

Find the right-closest value to µk+1 in Θ (µright) and let µk+1 = µright. Evaluate fα(µk+1).
If λk − ak+1 > bk+1 − λk, let

µk+1 = λk, fα(µk+1) = fα(λk)

λk+1 =
ak+1+λk

2 .

Find the left-closest value to λk+1 in Θ (λleft) and let λk+1 = λleft. Evaluate fα(λk+1).
Go to Step 5.

5: Iteration update: k ← k + 1 and go to Step 2.
6: Determine optimal solution: Evaluate for fα(ak) and fα(bk). If fα(ak) ≤ fα(bk), r

∗ = ak;
otherwise, r∗ = bk. Stop.
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not consistent with the master problem’s, an optimality cut based on dual of a subproblem is

generated. On the other hand, a feasibility cut can be generated if a subproblem is infeasible.

Taking advantage of the extreme ray for the dual of a infeasible subproblem can help to generate a

feasibility cut. Theories and applications for Benders decomposition are developed widely. Geoffrion

(1972) generalized Benders’ approach to a broader class of programs in which subproblems are not

restricted to linear programs. Stochastic programming problems, which is well known as its stage

structure can be solved efficiently by Benders decomposition (Santoso et al., 2005).

We implement Benders decomposition to solve MILPs and obtain fα(r). The network design

y and path availability z are master problem variables while the probabilities related variables

including π and φ are in subproblems.

With Benders decomposition, we present the master problem as follows:

(master) min
g,y,z

∑
s∈S

∑
k∈Ks

gsk (60)

s.t. (29)–(32), (34)–(35)

gstkt ≥ ρstktzstktλt +
∑
l∈Kst

zstlµlt +
∑
l∈Kst

(−1 + zstl)vlt, ∀t = 1, 2, · · · (61)

where t denotes the number of cuts generated by the t-th iteration of Benders decomposition.

Constraints (61) are further explained by subproblem duals later.

The subproblems which analyze the route-choice probabilities (33) are decomposed by s ∈ S, k ∈
Ks with dual variables (λ, µl, vl, ωl) as follows:

min
πsk

∑
(i,j)∈A

N sπskpijδ
sk
ij

[
csij − r

]+
(62)

s.t.
∑
l∈Ks

ρslφskl = ρskzsk (λ) (63)

φskl ≤ zsl, ∀l ∈ Ks (µl ≤ 0) (64)

φskl ≥ −(1− zsl) + πsk, ∀l ∈ Ks (vl ≥ 0) (65)

φskl ≤ πsk, ∀l ∈ Ks (ωl ≤ 0) (66)

πsk free, (67)

φskl ≥ 0, ∀l ∈ Ks (68)

Feed with master problem variables, route-choice probabilities can be estimated from subproblems.

Therefore, subproblems are feasible making it only necessary to generate optimality cuts from

subproblem duals. The subproblem dual is defined as follows:

(SDsk) ĝsk = max
λ,µ,v,ω

ρskzskλ+
∑
l∈Ks

zslµl +
∑
l∈Ks

(−1 + zsl)vl (69)
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s.t. −
∑
l∈Ks

µl −
∑
l∈Ks

vl =
∑

(i,j)∈A

N spijδ
sk
ij

[
csij − r

]+
(70)

ρslλ+ µl + vl + ωl ≤ 0,∀l ∈ Ks. (71)

In subproblem duals, we can obtain a (st, kt) with the objective value ĝstkt and the solution

(λt, µ
l
t, v

l
t, ω

l
t) accordingly. Let g̃stkt be an optimal solution for the master problem. If ĝstkt is

greater than g̃stkt , an optimality cut can be generated as (61) using (69). The algorithm is summa-

rized in Algorithm 2. In Algorithm 2, ε is a small positive parameter. Besides, I is used to indicate

Algorithm 2 Benders decomposition for fα(r)

1: Initialization: Set t = 0, upper bound UB =∞ and lower bound LB = 0. Go to Step 2.
2: Solve master problem: Solve the master problem and obtain the optimal solution (g̃, ỹ, z̃).

Let LB =
∑

s∈S
∑

k∈Ks
g̃sk and I = 0. Go to Step 3.

3: Solve subproblem: For (s, k), solve SDsk problem based on z̃ and obtain optimal solution

(λ̂, µ̂l, v̂l, ω̂l). The optimal objective value for the subproblem is ĝsk. If all (s, k) are visited, go
to Step 5; otherwise, go to Step 4.

4: Generate an optimality cut: If I = 1 go to Step 2; otherwise, compare g̃sk and ĝsk. If
ĝsk− g̃sk ≥ ε, update I ← 1, t← t+1, st ← s, kt ← k, λt ← λ̃, µt ← µ̃, vt ← ṽ and an optimality
cut is generated; otherwise, update (s, k) and go to Step 3.

5: Convergence check: If UB >
∑

s∈S
∑

k∈Ks
ĝsk, set UB =

∑
s∈S

∑
k∈Ks

ĝsk. If UB − LB ≤ ε,
terminate; otherwise go to Step 1.

whether an optimality cut is generated. Based on an optimal solution for the master problem, we

can generate multiple optimality cuts from different subproblems. The master problem becomes

very difficult to solve if too many cuts are added at a time, which makes hard to obtain an upper

bound. In order to produce upper bounds effectively, we only add one optimality cut after solving

the master problem until the algorithm terminates.

We implement Benders decomposition on the Ravenna network in (Bonvicini and Spadoni,

2008; Erkut and Gzara, 2008) with 105 nodes and 134 undirected arcs. Four kinds of hazardous

materials are considered including methanol, chlorine, gasoline and LPG. There are 31 shipments

and each shipment defines a certain demand of a hazmat transported from an OD pair. For each

shipment, we generate 50 paths using k-shortest path approach to test the performance of the

proposed framework. The computation process for solving f0.95(0.454) is shown in Figure 3. We

terminate the algorithm when the optimality gap is less than 5%. In this example, we can see that

a good feasible solution is achieved within a small number of iterations. The improvement of lower

bound, however, is very slow. Besides, it becomes more difficult to solve the master problem as

iteration proceeds. It indicates that the time spent on the iteration close to the optimal solution

can be far more than early iterations. An optimal solution is obtained when the upper bound and

the lower bound are close.

Since we can obtain feasible solutions and useful upper bounds before reaching the convergence

of Benders decomposition, a close optimal solution generated by a set of feasible solutions is used.

When the upper bound does not improve, we terminate the algorithm. Different stopping criteria
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Figure 3: Lower bounds and upper bounds for a MILP given r = 0.454 and α = 0.95 by Benders
decomposition for the Ravenna network.

such as the total time limit of algorithm, the total number of iterations and the number of iterations

that upper bound does not improve can be set. The local optimality can be guaranteed for the

best feasible solution thus providing a practical approach. Besides, the effectiveness to terminate

at a good feasible solution for fα(r) accelerates the solving process.

5.3 Performance of Algorithm 1 Depending on Algorithm 2

This section discusses the performance of Algorithm 1 depending on Algorithm 2. The Ravenna

network with 20 paths for each shipment are used for experiments in this section. Let α = 0.95 and

the maximum number of closed arcs N = 10. To solve the proposed CVaR minimization model for

hazmat network design, we incorporate the searching scheme for r in Section 5.1 with evaluations

of fα(r) using Algorithm 2. We can either use the optimal or the best feasible solution obtained

from Algorithm 2 to proceed the searching of r in Algorithm 1. The searching process of r is shown

in Figure 4.

It can be seen that an optimal network design is achieved when solving MILP with r = 0.687

and the minimum risk equals to 0.732. In Figure 4, it is found that the optimal r value is 0.699

and the approximated minimum risk is 0.742 by the best feasible solution of fα(r). Accordingly,

the network design results are shown in Figure 5. The number of closed arcs in both cases is 10

with 8 of which are the same. It indicates that both network designs are similar. Given the best

feasible design, the CVaR is the minimum value for Φ(r;π) through all r values. Hence, the risk for

best feasible network design is less than or equal to 0.742. The best feasible solution by Algorithm

2 yields a network design with the objective function value no greater than 1.35% of the optimal

solution. This shows that the line search for r with a best feasible solution for fα(r) is close to
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Figure 4: Searching of r based on the optimal and the best feasible solution by Algorithm 2

the optimal solution. In addition, it costs 3 hours to compute an optimal hazmat network design

depending on the exact value of fα(r), while the best feasible design is obtained in 1 hour and 33

minutes. To improve the computation efficiency while ensuring the solution quality, we incorporate

the line search for r with a best feasible solution for fα(r) in Section 6.

6 Numerical Experiments

In this section, applications of the proposed model are shown. All numerical experiments in this

section are conducted using the Ravenna (Bonvicini and Spadoni, 2008; Erkut and Gzara, 2008)

network. Four kinds of hazardous materials are considered: methanol, chlorine, gasoline and LPG.

There are 31 shipments transported through the networks. The data set includes the length of each

arc, the population that each kind of hazmat can influence on each arc, the OD pairs for each kind

of hazmat and the demand of hazmat accordingly.

6.1 Data Analysis

For a transportation network, we can obtain the network structure and related data including arc

length lij and the population density τij . For each arc (i, j), the accident probability pij and the

accident consequence csij to transport hazmat s should also be provided. To specify the accident

probability pij , we can use

pij = 3.19922× 10−7 × lij (72)
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(a) An optimal solution (b) The best feasible solution

Figure 5: Network designs based on the optimal and the best feasible solution by Algorithm 2

where 3.19922 × 10−7 is the hazmat accident rate per mile/vehicle (Federal Motor Carrier Safety

Administration, 2001). The accident consequence for an arc is quantified by the population exposure

impacted if that accident happens. We use the following formula to estimate csij (Toumazis and

Kwon, 2016)

csij = 3.14159× d2
s × τij (73)

where 3.14159 is the ratio of a circle’s circumference to its diameter. For different kinds of hazmat,

the impacted radius of an accident is different. The impacted radius ds is selected based on the

recommendations of the Emergency Response Guidebook (2012) for the length of the evacuation

radius in the case of an accident involving hazmat, which ranges between 0.5 and 1 mile depending

on the type of the hazmat of shipment s. τij is the population density along arc (i, j).

Our proposed model is a path-based hazmat network design model which requires specified path

alternatives by hazmat carriers. The k shortest path algorithm of Yen (1971) is used to generate

path sets. Despite the modifications or improvements of k shortest path algorithm, this approach

rarely emphasizes on accident consequences of arcs. If the set of path alternatives obtained by

k shortest path algorithm is very small, for example, only five paths for each shipment, some

important arcs with high chosen probabilities and high risks can be left out. On the other hand, it

is nearly impossible to solve our proposed model enumerating all paths for all shipments due to the

tremendous model size. For example, there are more than 30,000 variables and 100,000 constraints

for a network with 100 arcs, 3 shipments and 100 paths available for each shipment. Hazmat

carriers can be restricted to some roads due to massive weights, large heights and long lengths for

trucks. Usually, hazmat carriers select a route within a limited number of path alternatives. We

use k shortest path algorithm to enumerate a list of paths that includes the shortest 50 paths for

each shipment.
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Figure 6: Ravenna road-ban with different probability threshold value α

6.2 Computation Performance

The computational scheme in Section 5 is coded in the Julia Language with the JuMP.jl package

(Dunning et al., 2017) and CPLEX solver of version 12.6 is used. The experiments are implemented

on a computer with 8GB of RAM and a 2.7GHz processor.

Table 2 shows the computation time and objective values using Algorithm 1 and Algorithm

2. To accelerate the computation, Algorithm 2 is terminated when the solution is not improved

within the next fifty iterations. With the proposed algorithms, the average computation time to

solve CVaR minimization problem of Ravenna network is 3 hours for different probability threshold

values. The exact algorithm that uses CPLEX solver of version 12.6 to solve fα(r) for every r is

inadequate to solve the problem, because the optimality gap solving fα(r) with CPLEX is 99.9%

after 24 hours.

For the Ravenna network, the road-ban decisions with different probability threshold values can

be seen in Figure 6. For example, when α = 0.900 and α = 0.950, the optimal network designs

are the same. Regulators for hazmat transportation have different attitudes towards risks but may

end up with the same optimal network design. Theoretically, the higher the probability threshold

α is, the more we focus on severe accidence consequences. With the increasing of the probability

threshold value, the optimal network design for the proposed model can vary a lot. The optimal
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Table 2: Numerical results for different probability threshold value α in Ravenna network

α Computation time Closed arcs

0.900 2hr 53min
(17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.910 3hr 20min
(17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.920 3hr 22min
(17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.930 3hr 26min
(17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.940 3hr 17min
(17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.950 3hr 22min
(17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.960 3hr 26min
(17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.970 3hr 52min
(2, 7), (4, 17), (22, 38), (62, 54), (74, 69),
(74, 76), (105, 106), (38, 22), (74, 78), (106, 105)

0.980 3hr 46min
(3, 6), (6, 11), (62, 54), (83, 66), (60, 58),
(78, 74), (5, 10), (54, 62), (8, 11), (76, 74)

0.990 2hr 44min
(15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.991 2hr 37min
(15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.992 2hr 38min
(15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.993 2hr 38min
(15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.994 3hr 2min
(15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.995 3hr 1min
(15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.996 3hr 2min
(15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.997 2hr 4min
(8, 15), (69, 56), (83, 66), (78, 74), (105, 106),
(66, 83), (8, 11), (74, 78), (38, 54), (106, 105)

0.998 2hr 35min
(8, 15), (69, 56), (83, 66), (78, 74), (105, 106),
(66, 83), (8, 11), (74, 78), (38, 54), (106, 105)

0.999 2hr 4min
(8, 15), (69, 56), (83, 66), (78, 74), (105, 106),
(66, 83), (8, 11), (74, 78), (38, 54), (106, 105)
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Table 3: Comparisons of algorithms to obtain fα(r) = r + 1
1−αh(r) for the Ravenna network

r value (×103

population exposure)
h(r) h(r)CPLEX−h(r)Algorithm 2

h(r)Algorithm 2
Algorithm 2 CPLEX

0.454 0.046 0.079 72.8 %
0.265 0.091 0.152 67.7 %
0.427 0.053 0.086 64.2 %
0.130 0.167 0.255 52.9 %
0.352 0.068 0.110 62.7 %
0.199 0.120 0.191 59.3 %
0.165 0.133 0.213 60.7 %
0.231 0.109 0.171 57.8 %
0.183 0.124 0.201 61.4 %
0.174 0.130 0.207 59.3 %
0.191 0.121 0.196 62.1 %
0.197 0.122 0.192 57.7 %
0.186 0.123 0.199 61.1 %
0.193 0.123 0.194 58.1 %
0.189 0.123 0.197 59.8 %
0.188 0.123 0.198 60.7 %

network design of α = 0.990 only has two common closed arc – arc (78, 74) and (106, 105) with

α = 0.900 and α = 0.950. For example, closing arc (3, 6) plays a significant role in reducing risk

with α = 0.990 but not in α = 0.900 and α = 0.950 cases. If we close arc (3, 6), the large accident

consequences by hazmat within 1% chance to happen can be avoided while it may not be effective

to reduce the risk brought by 10% potential hazmat truck accidents.

6.3 Comparisons for Algorithms

To solve the CVaR minimization network design model, Algorithms 1 and 2 are proposed. Algo-

rithm 1 and the CPLEX solver can also be used to solve the problem. Algorithm 2 and the CPLEX

solver are compared for the values of fα(r) obtained. CPLEX may not return an optimal solution

for fα(r) within limited time. We have restricted 30 minutes as time limit for both Algorithm 2

and CPLEX. Seen from (55), fα(r) can be estimated by solving an MILP which only relates to r.

Let fα(r) = r+ 1
1−αh(r) and h(r) denote the objective value of the MILP. Given r values, Table 3

shows the obtained h(r) by using Algorithm 2 and CPLEX solver.

It can be seen that Algorithm 2 performs better than CPLEX in solving the MILPs and ob-

taining fα(r). Algorithm 2 can provide acceptable solutions for fα(r) thus proceeding Algorithm

1.
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6.4 Comparisons of Models

To show the value of our model, we compare SPP and RUM route-choice models with various CVaR

measures in Table 4. Note that when α = 0, the CVaRα measure is equivalent to the ER measure.

When using the SPP model with α = 0, it is equivalent to the deterministic model described in in

Section 2. As the probability threshold value α increases, it is preferred to close short arcs in SPP-

CVaRα while there is no pattern for our proposed model. In addition, our proposed RUM-CVaRα

model tends to close higher risk (population density) arc than SPP-CVaRα model does with the

same probability threshold value α.

To show the value of our proposed model using RUM and CVaR, we first define various measures

that are similar to the values of stochastic solutions (VSS) used to compare the performance of

stochastic solutions with the performance of the deterministic solutions in stochastic environments

(Birge, 1982). We define the Value of the RUM Solutions (VRS) over SPP solutions. When ER is

used as the risk measure, we define VRS as follows

VRS =
(RUM-ER measure of the SPP-ER solution)− (Optimal RUM-ER)

(Optimal RUM-ER)
(74)

and when CVaRα is used as the risk measure,

VRS =
(RUM-CVaRα of the SPP-CVaRα solution)− (Optimal RUM-CVaRα)

(Optimal RUM-CVaRα)
(75)

VRS measures how much we gain by considering RUM compared to SPP. Figure 7 presents VRS

with various α values. We observe that as α increases VRS tends to increase. This shows that

the value of probabilistic modeling becomes significant, when we are interested in low-probability

high-consequence outcomes and more risk averse. On the other hand, for mid-range α values, VRS

is not significant. Note that for some α values, VRS value becomes negative, which happens since

our algorithm finds a suboptimal solution in general.

Similarly, we define the Value of the CVaRα Solutions (VCSα) over ER solutions. When SPP is

used for route-choice modeling, we define VCSα as follows:

VCSα =
(SPP-CVaRα of the SPP-ER solution)− (Optimal SPP-CVaRα)

(Optimal SPP-CVaRα)
(76)

When RUM is used for route-choice modeling,

VCSα =
(RUM-CVaRα of the RUM-ER solution)− (Optimal RUM-CVaRα)

(Optimal RUM-CVaRα)
(77)

VCS measures how much we gain by considering CVaRα compared to ER. Figure 8 shows VCS with

various α values for both cases with SPP and RUM for route-choice modeling. We observe that

VCS increases significantly as α increases. In all α values, the value of CVaR solutions becomes

more apparent when RUM is used for route-choice modeling.
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Table 4: Comparisons of SPP-CVaR and RUM-CVaR models for the Ravenna network

Model
Probability Risk Measure Values Closed Arcs (in average)
threshold

SPP ER RUM ER SPP CVaRα RUM CVaRα
Length Population

α (mile) density (/mile2)

0 358.1 419.7 358.1 419.7 8.10 207.1
0.9 364.8 396.8 698.1 783.4 6.17 215.2
0.91 364.8 396.8 700.3 794.3 6.17 215.2
0.92 364.8 389.9 702.4 769.3 6.42 295.6
0.93 364.8 389.9 704.6 781.1 6.42 295.6
0.94 364.8 389.9 707.5 796.7 6.42 295.6
0.95 364.8 389.9 711.6 818.7 6.42 295.6
0.96 364.8 389.9 717.8 851.6 6.42 295.6
0.97 364.8 389.9 728.0 906.5 6.42 295.6

SPP 0.98 364.8 389.9 748.5 1016.2 6.42 295.6
CVaRα 0.99 374.2 424.9 808.5 1456.9 6.11 215.2

0.991 374.2 424.9 820.2 1494.6 6.11 215.2
0.992 397.5 474.8 832.4 1660.2 4.62 244.6
0.993 397.5 474.8 839.9 1711.0 4.62 244.6
0.994 397.5 474.8 849.8 1778.9 4.62 244.6
0.995 397.5 474.8 863.8 1849.6 4.62 244.6
0.996 397.4 459.8 884.2 1935.7 4.17 229.3
0.997 397.4 459.8 911.7 2032.4 4.17 229.3
0.998 398.1 423.4 965.9 2113.0 3.55 184.5
0.999 398.1 423.4 1113.8 2434.2 3.55 184.5

0 363.5 376.4 363.5 376.4 6.78 324.8
0.9 372.1 405.4 718.7 762.4 7.83 345.9
0.91 372.1 405.4 723.0 767.1 7.83 345.9
0.92 372.1 405.4 727.5 768.1 7.83 345.9
0.93 372.1 405.4 733.3 769.5 7.83 345.9
0.94 372.1 405.4 741.0 812.7 7.83 345.9
0.95 372.1 405.4 751.8 837.9 7.83 345.9
0.96 372.1 405.4 768.0 875.6 7.83 345.9
0.97 385.1 408.2 771.3 890.1 8.88 376.4

RUM 0.98 402.4 423.4 846.4 970.0 4.59 181.5
CVaRα 0.99 402.2 444.3 833.7 1165.4 5.08 298.9

0.991 402.2 444.3 839.7 1205.8 5.08 298.9
0.992 402.2 444.3 847.1 1255.0 5.08 298.9
0.993 402.2 444.3 856.7 1315.1 5.08 298.9
0.994 402.2 444.3 869.5 1388.1 5.08 298.9
0.995 402.2 444.3 887.4 1442.6 5.08 298.9
0.996 402.2 444.3 913.2 1450.3 5.08 298.9
0.997 389.2 435.7 1239.2 1459.6 5.80 247.4
0.998 389.2 435.7 1272.9 1463.4 5.80 247.4
0.999 389.2 435.7 1373.7 1487.0 5.80 247.4
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Figure 8: The value of CVaRα solutions over ER solutions with SPP and RUM for route-choice
modeling
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Figure 9: The value of RUM-CVaRα solutions over SPP-ER solutions

Finally, we also define the Value of the RUM-CVaRα Solutions (VRCSα), over SPP-ER solutions:

VRCSα =
(RUM-CVaRα of the SPP-ER solution)− (Optimal RUM-CVaRα)

(Optimal RUM-CVaRα)
(78)

Figure 9 shows VRCS with various α values. For lower α values, while the overall value of RUM-

CVaRα solution is marginal in the range of 4.9% to 8.6%, it clearly gives advantages if compared

with VCS in Figure 7. For higher α values, however, we find VRCS in the range of 16.7% to 64.1%.

By using both RUM and CVaRα in decision-making, we conclude that risk-averse hazmat network

designers can obtain clear merits for all probability threshold values, especially for higher values.

In the Ravenna network, the optimal network designs by the proposed model and the deter-

ministic model yield different available paths for shipments with which lead to different risks. The

comparisons of available paths for transporting methanol from node 110 to node 105 by both models

are shown in Table 5. For each path, the length, the ER to transport methanol and the probability

to be chosen by hazmat carriers are given. It is found that two of the available paths are the same

while the rest of them are different either in length or ER for both models. The lowest ER path

in both models is Path 1. It can be seen that Path 1 has 24.6% chance to be traveled in SPP-ER

model while it has the probability of 34.5% to be traveled in the proposed model. The proposed

model assigns larger probabilities for low risk paths than SPP-ER model does.

7 Concluding Remarks

In this paper, we formulate a road-ban problem in hazardous hazmat transportation considering the

uncertainty of routing behavior and a risk-averse measure for hazmat accident consequences. With

the probabilistic route choice, the risk distribution for hazmat transportation incorporates with
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Table 5: Comparisons of available paths for transporting methanol from node 110 to node 105
between RUM-CVaR and the deterministic (SPP-ER) model for the Ravenna network

Model Path Length ER Prob

RUM-CVaR0.99

1: 110→ 104→ 83→ 78→ 62→ 54→ 45→ 31 18.24 0.0149 0.345
→ 98→ 14→ 11→ 6→ 3→ 5→ 105

14 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 43 26.04 0.0169 0.158
→ 36→ 30→ 26→ 24→ 20→ 10→ 5→ 105

19 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 26.87 0.0168 0.146
→ 43→ 36→ 30→ 26→ 24→ 20→ 10→ 5→ 105

26 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 43 28.17 0.0172 0.128
→ 36→ 30→ 26→ 24→ 20→ 10→ 9→ 7→ 5→ 105

34 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 29.00 0.0172 0.118
→ 43→ 36→ 30→ 26→ 24→ 20→ 10→ 9→ 7→ 5→ 105

44 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 30.18 0.0171 0.105
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

SPP-ER

1 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 31 18.24 0.0149 0.246
→ 98→ 14→ 11→ 6→ 3→ 5→ 105

3 : 110→ 104→ 83→ 78→ 62→ 57→ 58→ 38 19.93 0.0169 0.207
→ 54→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

5 : 110→ 104→ 83→ 78→ 74→ 76→ 69→ 56 23.26 0.0157 0.149
→ 54→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

8 : 110→ 104→ 83→ 78→ 74→ 69→ 56→ 54 24.77 0.0160 0.128
→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

18 : 110→ 104→ 83→ 78→ 74→ 76→ 69→ 56 26.69 0.0164 0.106
→ 46→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

27 : 110→ 104→ 83→ 78→ 74→ 69→ 56→ 46 28.20 0.0167 0.091
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

44 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 30.18 0.0171 0.073
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105
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not only the road accident probability but also the carriers routing behavior. Following Toumazis

et al. (2013), we introduce conditional value-at-risk (CVaR) as a general, coherent, and risk-averse

approach. We present a CVaR minimization model for hazmat network design problems. The

proposed model is a mixed-integer nonlinear program, which can be decomposed into two stages: (1)

searching the optimal solution for a nonnegative variable; (2) solving MILPs given the nonnegative

variable. We develop a line search with mapping based on Benders decomposition for solving MILP

sub-problems and obtain quality network design solutions.

We present case studies in the real road network of Ravenna. The comparisons of algorithms

show that the proposed methods can solve the CVaR minimization network design problem effi-

ciently and generate quality network design solutions. To highlight the value of our model, compar-

isons of the deterministic model and the proposed model are conducted. When the confidence level

of CVaR is small, it indicates that decision makers and regulators for the transportation network

pay limited attention on sever accidents.

With the proposed algorithms, the average computation time to solve CVaR minimization

problem of a 105-node and 268-arc network was 3 hours for different probability threshold α values.

The exact algorithm that uses CPLEX solver of version 12.6 was not inadequate to solve even a

linear subproblem, because the optimality gap solving fα(r) with CPLEX was 99.9% after 24 hours.

While the proposed algorithm was shown to be effective, for large-scale urban networks, we

will need a faster algorithm. Since the proposed algorithm relies on solutions of multiple MILP

problems, it is not suitable for large-scale networks. Developing a fast heuristic algorithm is a

potential future research direction.

There are some other limitations of the proposed model and method. The first limitation is that

we did not consider any uncertainty from data sources and hazmat travel demand. Considering

these additional sources of uncertainty will make the network design problem more challenging.

Second, the RUM used in this paper is not the most advanced random route-choice model. More

advanced RUM approaches are available, which may be incorporated within the network design

problem suggested in this paper, at the cost of computational time increases. Third, we did not

consider equity in the network design. Risk equity among zones and cost equity among hazmat

carriers should be considered for fair management of the road infrastructure. Addressing these

limitations are promising future research directions.

Another interesting extension of the proposed method in this paper will be the consideration

of multiples modes of hazmat transportation as in multimodal or intermodal transportation. The

discrete-choice model in RUM should be extended to consider mode choices in multi-modal trans-

portation. This will create a nested logit model, for example, which adds significant computational

and analytical complexity in the model.

31



Acknowledgment

This manuscript is based upon work funded partially by a grant from the U.S. Department of

Transportation’s University Transportation Centers Program. However, the U.S. Government as-

sumes no liability for the contents or use thereof. The contents of this report reflect the views of

the authors, who are responsible for the facts and the accuracy of the information presented herein.

References

Abkowitz, M. D., M. Lepofsky, P. Cheng. 1992. Selecting criteria for designating hazardous mate-

rials highway routes. Transportation Research Record (1333).

Artzner, P., F. Delbaen, J.-M. Eber, D. Heath. 1997. Thinking coherently: generalised scenarios

rather than VaR should be used when calculating regulatory capital. Risk-London-Risk Magazine

Limited 10 68–71.

Artzner, P., F. Delbaen, J.-M. Eber, D. Heath. 1999. Coherent measures of risk. Mathematical

Finance 9(3) 203–228.

Battelle. 2006. Hazardous materials routing survey analysis. URL https://www.fmcsa.dot.gov/

sites/fmcsa.dot.gov/files/docs/HM-Highway-Routing-Route-Plan-Guidance-Report-

and-Appendices-FINAL-March-2009.pdf.

Ben-Akiva, M., M. Bergman, A. J. Daly, R. Ramaswamy. 1984. Modeling inter-urban route choice

behaviour. Proceedings of the 9th international symposium on transportation and traffic theory .

VNU Science Press Utrecht, The Netherlands, 299–330.

Ben-Akiva, M., M. Bierlaire. 1999. Discrete choice methods and their applications to short term

travel decisions. Handbook of Transportation Science. Springer, 5–33.

Ben-Akiva, M. E., S. R. Lerman, S. R. Lerman. 1985. Discrete choice analysis: theory and appli-

cation to travel demand , vol. 9. MIT press.

Birge, J. R. 1982. The value of the stochastic solution in stochastic linear programs with fixed

recourse. Mathematical Programming 24(1) 314–325.

Bonvicini, S., G. Spadoni. 2008. A hazmat multi-commodity routing model satisfying risk criteria:

a case study. Journal of Loss Prevention in the Process Industries 21(4) 345–358.

Cascetta, E., A. Nuzzolo, F. Russo, A. Vitetta. 1996. A modified logit route choice model over-

coming path overlapping problems: specification and some calibration results for interurban net-

works. Proceedings of the 13th International Symposium on Transportation and Traffic Theory .

Pergamon Oxford, NY, USA, 697–711.

32

https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/HM-Highway-Routing-Route-Plan-Guidance-Report-and-Appendices-FINAL-March-2009.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/HM-Highway-Routing-Route-Plan-Guidance-Report-and-Appendices-FINAL-March-2009.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/HM-Highway-Routing-Route-Plan-Guidance-Report-and-Appendices-FINAL-March-2009.pdf


Daganzo, C. F., Y. Sheffi. 1977. On stochastic models of traffic assignment. Transportation Science

11(3) 253–274.

Davis, G. A. 1994. Exact local solution of the continuous network design problem via stochastic

user equilibrium assignment. Transportation Research Part B: Methodological 28(1) 61–75.

Dial, R. B. 1971. A probabilistic multipath traffic assignment model which obviates path enumer-

ation. Transportation Research 5(2) 83–111.

Duffie, D., J. Pan. 1997. An overview of value at risk. The Journal of Derivatives 4(3) 7–49.

Dunning, I., J. Huchette, M. Lubin. 2017. JuMP: a modeling language for mathematical optimiza-

tion. SIAM Review 59(2) 295–320. doi: 10.1137/15M1020575.

Emergency Response Guidebook. 2012. Emergency response guidebook : A guide-

book for first responders during the initial phase of a dangerous goods/hazardous ma-

terials transportation incident. URL http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_

7410989F4294AE44A2EBF6A80ADB640BCA8E4200/filename/ERG2012.pdf.

Erkut, E., F. Gzara. 2008. Solving the hazmat transport network design problem. Computers &

Operations Research 35(7) 2234–2247.

Erkut, E., A. Ingolfsson. 2000. Catastrophe avoidance models for hazardous materials route plan-

ning. Transportation Science 34(2) 165–179.

Esfandeh, T., R. Batta, C. Kwon. 2017. Time-dependent hazardous-materials network design

problem. Transportation Science 52(2) 454–473.

Esfandeh, T., C. Kwon, R. Batta. 2016. Regulating hazardous materials transportation by dual

toll pricing. Transportation Research Part B: Methodological 83 20–35.

Fan, T., W.-C. Chiang, R. Russell. 2015. Modeling urban hazmat transportation with road closure

consideration. Transportation Research Part D: Transport and Environment 35 104–115.

Federal Motor Carrier Safety Administration. 2001. Comparative risks of hazardous materials

and nonhazardous materials truck shipment accidents/incidents. URL https://www.hsdl.org/

?abstract&did=233019.

Federal Motor Carrier Safety Administration. 2016. Federal motor carrier safety regula-

tions. URL https://www.fmcsa.dot.gov/regulations/hazardous-materials/how-comply-

federal-hazardous-materials-regulations.

Federal Motor Carrier Safety Administration. 2018. National hazardous materials route reg-

istry. URL https://www.fmcsa.dot.gov/regulations/hazardous-materials/national-

hazardous-materials-route-registry.

33

http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_ 7410989F4294AE44A2EBF6A80ADB640BCA8E4200/filename/ERG2012.pdf
http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_ 7410989F4294AE44A2EBF6A80ADB640BCA8E4200/filename/ERG2012.pdf
https://www.hsdl.org/?abstract&did=233019
https://www.hsdl.org/?abstract&did=233019
https://www.fmcsa.dot.gov/regulations/hazardous-materials/how-comply-federal-hazardous-materials-regulations
https://www.fmcsa.dot.gov/regulations/hazardous-materials/how-comply-federal-hazardous-materials-regulations
https://www.fmcsa.dot.gov/regulations/hazardous-materials/national-hazardous-materials-route-registry
https://www.fmcsa.dot.gov/regulations/hazardous-materials/national-hazardous-materials-route-registry


Fontaine, P., S. Minner. 2018. Benders decomposition for the hazmat transport network design

problem. European Journal of Operational Research 267(3) 996–1002.

Geoffrion, A. M. 1972. Generalized benders decomposition. Journal of Optimization Theory and

Applications 10(4) 237–260.

Gzara, F. 2013. A cutting plane approach for bilevel hazardous material transport network design.

Operations Research Letters 41(1) 40–46.

Hess, S., M. Quddus, N. Rieser-Schüssler, A. Daly. 2015. Developing advanced route choice models

for heavy goods vehicles using gps data. Transportation Research Part E: Logistics and Trans-

portation Review 77 29–44.

Hosseini, S. D., M. Verma. 2018. Conditional value-at-risk (CVaR) methodology to optimal train

configuration and routing of rail hazmat shipments. Transportation Research Part B: Method-

ological 110 79–103.

Jin, H., R. Batta. 1997. Objectives derived form viewing hazmat shipments as a sequence of

independent Bernoulli trials. Transportation Science 31(3) 252–261.

Kang, Y., R. Batta, C. Kwon. 2014. Value-at-risk model for hazardous material transportation.

Annals of Operations Research 222(1) 361–387.

Kara, B. Y., V. Verter. 2004. Designing a road network for hazardous materials transportation.

Transportation Science 38(2) 188–196.

Kwon, C., T. Lee, P. Berglund. 2013. Robust shortest path problems with two uncertain multi-

plicative cost coefficients. Naval Research Logistics 60(5) 375–394.

List, G. F., P. B. Mirchandani, M. A. Turnquist, K. G. Zografos. 1991. Modeling and analysis

for hazardous materials transportation: Risk analysis, routing/scheduling and facility location.

Transportation Science 25(2) 100–114.

Liu, H., D. Z. Wang. 2015. Global optimization method for network design problem with stochastic

user equilibrium. Transportation Research Part B: Methodological 72 20–39.

Marcotte, P., A. Mercier, G. Savard, V. Verter. 2009. Toll policies for mitigating hazardous materials

transport risk. Transportation Science 43(2) 228–243.

McFadden, D. 1975. The revealed preferences of a government bureaucracy: theory. The Bell

Journal of Economics 401–416.

Pipeline and Hazardous Materials Safety Administration. 2017. Hazmat incident report: 10 year

incident summary reports. URL https://hip.phmsa.dot.gov.

Prashker, J. N., S. Bekhor. 2004. Route choice models used in the stochastic user equilibrium

problem: a review. Transport Reviews 24(4) 437–463.

34

https://hip.phmsa.dot.gov


Quattrone, A., A. Vitetta. 2011. Random and fuzzy utility models for road route choice. Trans-

portation Research Part E: Logistics and Transportation Review 47(6) 1126–1139.

Ramming, M. S. 2001. Network knowledge and route choice. Ph.D. thesis, Massachusetts Institute

of Technology.

Rockafellar, R. T., S. Uryasev. 2000. Optimization of conditional value-at-risk. Journal of Risk 2

21–42.

Rockafellar, R. T., S. Uryasev. 2002. Conditional value-at-risk for general loss distributions. Journal

of Banking & Finance 26(7) 1443–1471.

Santoso, T., S. Ahmed, M. Goetschalckx, A. Shapiro. 2005. A stochastic programming approach

for supply chain network design under uncertainty. European Journal of Operational Research

167(1) 96–115.

Su, L., L. Sun, M. Karwan, C. Kwon. 2017. Spectral risk measure minimization in hazardous

materials transportation. IISE Transactions Accepted.

Sun, L., M. H. Karwan, C. Kwon. 2016. Robust hazmat network design problems considering risk

uncertainty. Transportation Science 50(4) 1188–1203.

Sun, L., M. H. Karwan, C. Kwon. 2018. Generalized bounded rationality and robust multi-

commodity network design. Operations Research 66(1) 42–57.

Taslimi, M., R. Batta, C. Kwon. 2017. A comprehensive modeling framework for hazmat network

design, hazmat response team location, and equity of risk. Computers & Operations Research

79 119–130.

Toumazis, I., C. Kwon. 2013. Routing hazardous materials on time-dependent networks using

conditional value-at-risk. Transportation Research Part C: Emerging Technologies 37 73–92.

Toumazis, I., C. Kwon. 2016. Worst-case conditional value-at-risk minimization for hazardous

materials transportation. Transportation Science 50(4) 1174–1187.

Toumazis, I., C. Kwon, R. Batta. 2013. Value-at-risk and conditional value-at-risk minimization

for hazardous materials routing. Handbook of OR/MS Models in Hazardous Materials Trans-

portation. Springer, 127–154.

Verter, V., B. Y. Kara. 2008. A path-based approach for hazmat transport network design. Man-

agement Science 54(1) 29–40.

Williams, H. C. 1977. On the formation of travel demand models and economic evaluation measures

of user benefit. Environment and Planning A 9(3) 285–344.

Yen, J. Y. 1971. Finding the K shortest loopless paths in a network. Management Science 17(11)

712–716.

35


