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Despite significant advances in risk management, the routing of hazardous materials (hazmat) has relied

on relatively simplistic methods. In this paper, we apply an advanced risk measure, called conditional

value-at-risk (CVaR), for routing hazmat trucks. CVaR offers a flexible, risk-averse, and computationally

tractable routing method that is appropriate for hazmat accident mitigation strategies. The two important

data types in hazmat transportation are accident probabilities and accident consequences, both of which

are subject to many ambiguous factors. In addition, historical data are usually insufficient to construct a

probability distribution of accident probabilities and consequences. This motivates our development of a

new robust optimization approach for considering the worst-case CVaR (WCVaR) under data uncertainty.

We study important axioms to ensure that both the CVaR and WCVaR risk measures are coherent and

appropriate in the context of hazmat transportation. We also devise a computational method for WCVaR

and demonstrate the proposed WCVaR concept with a case study in a realistic road network.
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1. Introduction

The Pipeline and Hazardous Materials Safety Administration (2013) defines hazardous materials

(hazmat) as “a substance or material capable of posing an unreasonable risk to health, safety, or

property when transported in commerce,” and the US Department of Transportation manages

hazmat transportation with nine classifications (Federal Motor Carrier Safety Administration 2001).

Hazmat accidents can result in significant injuries to the population and damage to the environment.

In 2007, hazmat shipments accounted for about 18 percent of the total freight shipped in the U.S.

on a tonnage basis (U.S. Census Bureau 2007).

Trucks are the most widely used mode for hazmat transportation over relatively short distances.

The popularity of trucks for short-haul hazmat transport stems from their flexibility of operation,

i.e., their ability to pick up and drop off hazmat close to its point of origin and destination,

respectively. As might be expected, the number of hazmat incidents involving truck transport is also

the highest of the transport modes. While all transport modes can cause severe consequences to
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the community, trucks have a more direct impact on public safety. People can be seriously injured

or killed, important infrastructure systems can be damaged, and residential environments can be

destroyed.

In hazmat transportation, the extreme consequences of accidents must be avoided. However,

current routing methods rely on simplistic rules or the most economical route, despite the significant

advances being made in the field of risk management. In addition, some of the existing routing

methods reported in the literature do not provide risk-averse routing, and others lack the flexibility

necessary to accommodate various practical factors. With the objective of providing a simultaneously

risk-averse and flexible route decision-making process, we study new routing methods based on the

concept of conditional value-at-risk (CVaR).

The CVaR concept is closely related to value-at-risk (VaR). The VaR concept has been widely

applied in the financial and economic fields (Duffie and Pan 1997, Linsmeier and Pearson 2000)

and its application to hazmat transportation was recently introduced (Kang et al. 2014a,b). Critics

claim that, as a risk measure, VaR ignores and cuts off what could happen in the distributions tail;

hence some argue that VaR can bring inaccurate risk perception to decision makers which could

lead to catastrophic outcomes (Einhorn 2008, Nocera 2009). This has motivated the consideration

of CVaR in hazmat transportation (Toumazis et al. 2013, Toumazis and Kwon 2013).

Assuming that data are uncertain within given sets, this paper considers a worst-case CVaR

(WCVaR) minimization problem for hazmat routing. While CVaR has the potential to be an

important risk measure and decision-making tool in the context of hazmat transportation of a

low-probability-high-consequence nature, there is a critical issue that must be addressed in any

hazmat routing method—data uncertainty. While the consequences of hazmat accidents usually

cause serious problems, hazmat-accident data are usually insufficient for constructing probability

distributions. The accident probability of hazmat trucks in each road segment is difficult to estimate

and consequences from such accidents are dependent on various and uncertain factors such as the

severity of the accident, local population density and weather conditions at the time of the accident,

the type of hazmat shipment, and the quantity of hazmat released (Kwon et al. 2013). These factors

make any hazmat routing method based on the stochasticity of data less meaningful.

We distinguish the two kinds of robustness: one derived from the CVaR concept itself, and

the other from the worst-case consideration in WCVaR. CVaR, especially with a high probability

threshold, provides protections against high levels of loss in the underlying risk, therefore providing

robustness. In the context of hazmat transportation, when the probability threshold is very high,

the robustness of the CVaR concept is related to the worst accident location. On the other hand, the

worst-case consideration in WCVaR provides protections against data inaccuracy, and its robustness

is related to the worst realizations of accident probabilities and accident consequences. Therefore,
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Table 1 Mathematical Notation

G(N ,A) A graph of transportation network
N Set of nodes, |N |= n
A Set of arcs, |A|=m
pij Accident probability along arc (i, j)
cij Accident consequence along arc (i, j)
P Set of all available paths for given O-D pair
C Set of ascending-order sorted arc consequences in G
Al Arc set for path l, and |Al| is the number of arcs in l
Cl Set of ascending-order sorted arc consequences for path l
Rl Discrete random variable for the risk along path l ∈P

these two kinds of robustness are fundamentally different. Furthermore, the uncertainty regarding

the accident locations can be represented as a probability distribution, while the uncertainty of

data involves intervals only.

The contributions of this paper are summarized as follows: First, we formally introduce WCVaR

in hazmat routing. Second, we provide axiomatic studies to the validity of CVaR and WCVaR

in the context of hazmat transportation and the meanings of the axioms proposed by Artzner

et al. (1999) and Erkut and Verter (1998). Third, we devise an efficient computational method for

solving WCVaR minimization problems for hazmat routing. Fourth, we confirm the validity of the

WCVaR concept and the practicability of the proposed algorithm with a case study in a realistic

road network.

2. Related Models

In this section, we provide a brief summary of existing approaches in hazmat routing. Let us

consider a transportation network G= (N ,A), where N is the set of nodes and A the set of arcs.

Each arc (i, j) ∈A is assigned two attributes: accident probability pij and accident consequence

cij . Values of cij can be determined by a risk assessment method, for example, the λ-neighborhood

concept proposed by Batta and Chiu (1988), and values of pij should be collected from certain data

sources. All the mathematical notation used in this Section is provided in Table 1. Assume path l

is an ordered set of arcs Al = {(ik, jk) ∈A : k = 1,2, . . . , |Al|} where (ik, jk) is the k-th arc in the

path. To measure the risk that this path generates, the Traditional Risk method (TR) employs the

expected value of the consequence along path l (Sherali et al. 1997, Erkut and Verter 1998):

E
[
Rl
]

=
∑

(ik,jk)∈Al

∏
(ih,jh)∈Al,h<k

(1− pihjh)pikjkcikjk (1)

The risk Rl along the path l has the following discrete distribution:

Pr{Rl = x}=


1−

∑
(ik,jk)∈Al

∏
(ih,jh)∈Al,h<k

(1− pihjh)pikjk if x= 0∏
(ih,jh)∈Al,h<k

(1− pihjh)pikjk if x= cikjk ∀(ik, jk)∈Al
(2)
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Table 2 Classic Models (Erkut and Ingolfsson 2005)

Model Risk Measure Objective Model Risk Measure Objective

TR Expected Risk min
l∈P

∑
(i,j)∈Al

pijcij MM Maximum
Risk

min
l∈P

max
(i,j)∈Al

cij

PE Population
Exposure

min
l∈P

∑
(i,j)∈Al

cij MV Mean-
Variance

min
l∈P

∑
(i,j)∈Al

(pijcij + kpij(cij)
2)

IP Incident
Probability

min
l∈P

∑
(i,j)∈Al

pij DU Disutility min
l∈P

∑
(i,j)∈Al

pij(exp(kcij − 1))

PR Perceived Risk min
l∈P

∑
(i,j)∈Al

pij(cij)
q CR Conditional

Probability
min
l∈P

 ∑
(i,j)∈Al

pijcij

/ ∑
(i,j)∈Al

pij



where indices k and h being integers between 1 and |Al|. Following Jin and Batta (1997), the

distribution (2) can be approximated by

Pr{Rl = x} ≈

1−
∑

(i,j)∈Al

pij if x= 0

pij if x= cij ∀(i, j)∈Al
(3)

Erkut and Verter (1998) verified that approximation (3) introduced insignificant errors. All the

subsequent discussions in this paper will use this approximated risk distribution.

With approximation (3), the TR model (1) can be written as E [Rl]≈
∑

(i,j)∈Al pijcij that is much

easier to optimize than (1), because the resultant problem is a shortest-path problem in which the

product pijcij represents the cost of traversing an arc (i, j). Various other models (Table 2) have

been developed, focusing either only on one of the two attributes or on both. We refer the reader to

the work of Erkut and Ingolfsson (2005) for a detailed review of these models.

Bell (2007) proposes a mixed-route model considering data uncertainty; however, it is limited

to accident probabilities and requires path-enumeration for application. Other works address

time-dependent hazmat transportation (Miller-Hooks and Mahmassani 1998, Chang et al. 2005,

Androutsopoulos and Zografos 2012, Toumazis and Kwon 2013), equitable risk routes (Carotenuto

et al. 2007), and emergency response decisions (Zografos and Androutsopoulos 2008), with consid-

eration of traditional-risk minimization approaches. In addition, Waller and Ziliaskopoulos (2006)

have applied chance-constrained optimization methods to traffic assignment problems to consider

travel-demand uncertainty.

Compared with other risk measures used in hazmat transportation, we claim that CVaR is a better

risk measure in the sense that it offers a control parameter—probability threshold or confidence

level—that is easier to understand for flexible decision making, and it provides a risk-averse routing

method. In addition, complicated CVaR problems can be solved efficiently.
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In the context of traffic assignment, Chen and Zhou (2010) propose the concept of mean-excess

travel time (METT) similar to CVaR. METT models consider the travelers’ average travel time that

exceeds a specified travel time budget in user equilibrium frameworks. Although under a different

name, the notion of METT is consistent with CVaR. Wu and Nie (2011) compare METT and other

risk models that consider travel time reliability using stochastic dominance. While a continuous

distribution is assumed for travel time, a discrete distribution is used in hazmat transportation risk.

This distinction enables us to devise a more efficient computational method for CVaR than METT.

Assuming that data are uncertain within given sets, this paper considers a worst-case CVaR

(WCVaR) minimization problem for hazmat routing. For financial portfolio optimization applications,

worst-cases have been considered for VaR (El Ghaoui et al. 2003) and CVaR (Zhu and Fukushima

2009). Our worst-case problem is structurally different from these problems. There are two types

of uncertain data in hazmat problems: accident probability and accident consequence. Since the

sources for these two types of data are generally different, the level of uncertainty in each data type

is independent from each other and it is difficult to be considered as a single uncertain data (Kwon

et al. 2013). We base our methodological developments on the robust shortest path problem with

two uncertain multiplicative cost coefficients studied in Kwon et al. (2013).

3. Axiomatic Study of Conditional Value-at-Risk

Approximately—or exactly when the risk is a continuous random variable—CVaR is the expected

value of risk that is greater than or equals to the VaR value at the given confidence level α;

hence CVaR quantifies the risk in the long tail. We refer readers to Sarykalin et al. (2008) and

Toumazis et al. (2013) for details. To understand the CVaR concept better in the context of hazmat

transportation, this section provides an axiomatic study. To define CVaR, let us consider the

following auxiliary function (Rockafellar and Uryasev 2000, Pflug 2000) with the approximation (3):

Φl
α(r) = r+

1

1−α
E[Rl− r]+ = r+

1

1−α

{(
1−

∑
(i,j)∈Al

pij

)
[0− r]+ +

∑
(i,j)∈Al

pij[cij − r]+
}

(4)

where [x]+ = max(x,0). The first term r is related to the VaR value, and the second term 1
1−αE[Rl−

r]+ is related to the expected additional risk beyond VaR. Toumazis et al. (2013) show that the

CVaR for path l can be measured by

CVaRlα ≈min
r∈R

Φl
α(r) = min

r∈R+

r+
1

1−α
∑

(i,j)∈Al

pij[cij − r]+
 (5)

Finally the CVaR minimization is equivalent to minimizing Φl
α by choosing a path l ∈ P at the

confidence level α. That is,

min
l∈P

CVaRlα ≈ min
l∈P,r∈R+

Φl
α(r) = min

l∈P,r∈R+

[
r+

1

1−α
∑

(i,j)∈Al

pij[cij − r]+
]

(6)
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which can be solved by a finite number of shortest path problems (Toumazis et al. 2013), mainly

due to the discreteness of the risk distribution.

The CVaR is known to satisfy the four axioms by Artzner et al. (1999) to be a coherent risk

measure for general loss distributions (Rockafellar and Uryasev 2002). The four axioms for a risk

measure ξ that maps a random loss X to a real number are:

CA1 (Translation Invariance) For any real number m, ξ(X +m) = ξ(X) +m.

CA2 (Subadditivity) For all X1 and X2, ξ(X1 +X2)≤ ξ(X1) + ξ(X2).

CA3 (Positive Homogeneity) For all λ≥ 0, ξ(λX) = λξ(X).

CA4 (Monotonicity) For all X1 and X2 with X1 ≤X2 a.s., ξ(X1)≤ ξ(X2).

The question is if the approximated version of CVaR in (5) is still coherent. Note that the approxi-

mated distribution (3) constitutes a complete probability distribution, and the approximated CVaR

in (5) is the exact CVaR for the distribution (3). Since CVaR is coherent for the distribution (3),

the approximated CVaR measure in (5) is also coherent.

While CVaR in hazmat transportation—both exact and approximated—is a coherent risk measure,

we find that the translation invariance axiom CA1 is less meaningful and the monotonicity axiom

CA4 is not applicable in the context of hazmat transportation. The meaning of X +m in CA1

in hazmat transportation is that the accident consequence increases by m, even when there is no

accident. Although CA1 is mathematically correct and valid, it reads improperly in the context of

hazmat transportation. We also note that the condition in the monotonicity axiom CA4 is not

applicable to hazmat routing, as the axiom considers the case when the relationship between two

random variables is that Rl1 ≤Rl2 a.s., i.e. Pr[Rl1 >Rl2 ] = 0. In hazmat routing, Pr[Rl1 >Rl2 ] is

never zero, because it is possible that Rl2 = 0 when Rl1 > 0 as long as pij > 0 for some (i, j)∈Al1 .

While the meaning of the positive homogeneity axiom CA3 is clear in hazmat transportation, the

meaning of the subadditivity axiom CA2 is ambiguous. We provide a “translation” of CA2 in the

context of hazmat transportation with the approximate CVaR measure (5). Artzner et al. (1999)

states the meaning of CA2 as “a merger does not create extra risk”. In the context of hazmat, we

may similarly state as follows: using two paths by a same carrier does not create extra risk. We

consider two such cases. First, when two different trucks from the same carrier use two different

paths, say l1 and l2. Then X1 +X2 in CA2 requires a joint probability of Rl1 +Rl2 where each is

of the form (2). However, we can approximately write:

Pr{Rl1 +Rl2 = z} ≈


1−

∑
(i,j)∈Al1∪Al2

pij if z = 0

pij if z = cij ∀(i, j)∈Al1 ∪Al2
(7)

Note that Pr{Rl1 +Rl2 = cij + ci′j′} ≈ 0 for any (i, j)∈Al1 and (i′, j′)∈Al2 , which means that the

probability of one accident along path l1 and another accident along path l2 at the same time is very



Toumazis and Kwon: WCVaR Minimization for Hazmat Transportation
7

small. Alternatively, we can consider a truck traveling both paths l1 and l2 within one trip, when l2

starts where l1 ends. In both cases, the translations of CA2 are same with the approximation. The

translation follows.

CA2’ (Subadditivity) For all paths l1 and l2,

min
r∈R+

[
r+

1

1−α

{ ∑
(i,j)∈Al1

pij[cij − r]+ +
∑

(i,j)∈Al2

pij[cij − r]+
}]
≤

min
s∈R+

[
s+

1

1−α
∑

(i,j)∈Al1

pij[cij − s]+
]

+ min
t∈R+

[
t+

1

1−α
∑

(i,j)∈Al2

pij[cij − t]+
]

We state our finding as a proposition:

Proposition 1. The approximated CVaR in (5) for hazmat routing is a coherent risk measure

in the sense of Artzner et al. (1999) satisfying CA1, CA2’, and CA3.

All the proofs of propositions and lemmas are provided in the appendix.

Erkut and Verter (1998) proposed three axioms that path evaluation models in hazmat routing

should satisfy. Let us denote a risk measure of path l by ζ l(p, c), where p is a vector of accident

probabilities and c is a vector of accident consequences.

HA1 (Monotonicity) If path l1 is contained in path l2, then ζ l1 ≤ ζ l2 .

HA2 (Optimality Principle) If ζ l2 = minl∈P2 ζ
l and path l1 is contained in path l2, then ζ l1 =

minl∈P1 ζ
l, where P1 and P2 are the sets of all paths connecting the origin and the destination of

path l1 and path l2, respectively.

HA3 (Attribute Monotonicity) For any vectors m≥ 0 and n≥ 0, ζ l(p, c)≤ ζ l(p+m,c+n) for all

path l ∈P.

Note that the exact Traditional Risk model (1) violates all three axioms. On the other hand, the

approximated Traditional Risk model satisfies all three axioms (Erkut and Verter 1998, Erkut and

Ingolfsson 2005). There are many other models that satisfy all three axioms with the approximation.

There are some models that satisfy HA1 and HA3, but violate HA2 (Erkut and Verter 1998).

We can show that the CVaR model with approximation as in (5) is one of such models.

Proposition 2. The CVaR measure with approximation (5) satisfies Axioms HA1 and HA3

for path evaluation models in hazmat routing.

Figure 1 illustrates an example when CVaR violates HA2. For traveling from node 1 to node 4,

there are two paths l1 and l2, and path l1 is optimal with respect to CVaR minimization. However,

for traveling from node 2 to node 3, path l3, which is contained in path l1, is not optimal; path l4 is

optimal. Since the CVaR model violates the path-evaluation optimality principle, we cannot use a

labeling algorithm to solve the model.
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1 2 3 4

5

p12 = 0.001

q12 = 13

p23 = 0.0015

q23 = 14

p34 = 0.002

q34 = 17

p
2
5
=

0.03

q
2
5
=

20

p 5
3

=
0.

00
04

q 5
3

=
2

α= 0.979

l1 = {1,2,3,4}
l2 = {1,2,5,3,4}
l3 = {2,3}
l4 = {2,5,3}

CVaRl1α = 3.2381

CVaRl2α = 20.0000

CVaRl3α = 1.0000

CVaRl4α = 0.3810

Figure 1 An example showing that CVaR violates the path-selection optimality principle suggested by Erkut and

Verter (1998).

4. Data Uncertainty and Robust Routing

There are two kinds of uncertain factors in hazmat transportation problems. When we want to

minimize the expected accident consequence, we first need to identify the probability distribution

of the loss. Such identification is related to this question: In which road segment and at what

probability will an accident occur? This is the first uncertain factor.

The second uncertainty comes from the data pij and cij, which constitute the distribution of

loss. If the data pij and cij are provided, we can determine a safe route using various methods.

However, for hazmat problems, accurate estimates of the data and their distribution information

are rarely available, because hazmat accidents are extremely low-probability events. In addition to

this property of hazmat accidents, the accident consequences depend on the weather conditions

(Akgun et al. 2007) at the time of the accident, the nature of accidents and hazmat types, and the

population migration occurring throughout the day. Moreover, estimation of the environmental

impact of an accident can be biased depending on the attitude of the decision maker. Therefore,

accident consequences are hard to estimate with accuracy.

Due to the insufficiency of available data, any stochastic-programming-based approach becomes

impractical. What we can obtain at best would be interval data of the accident probabilities and

consequences. That is, we may be able to obtain the minimum possible and maximum possible values,

without distributional information. In such cases, robust optimization methods considering the

worst case are most appropriate. For financial portfolio optimization, worst-case CVaR optimization

methods have been proposed (Zhu and Fukushima 2009, Čerbáková 2006), but the hazmat routing

application has completely different challenges of computability.

To explain the differences, let us denote the uncertain probabilities and consequences by p̃ij and

c̃ij. When interval data are available, we have p̃ij ∈ [pij, pij + qij] and c̃ij ∈ [cij, cij + dij], where qij

and dij are positive constants. For more general cases, we can write p̃ ∈ Up and q̃ ∈ Vc. We call
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Up and Vc the set of uncertainty. The uncertain formulation of the Traditional Risk model that

minimizes the expected risk is

min
x∈Ω

max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

p̃ij c̃ijxij (8)

where

Ω≡
{
x :

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i∈N , and xij ∈ {0,1} ∀(i, j)∈A
}

(9)

and the parameter bi has the following values:

bi =


1 if node i is the source

−1 if node i is the sink

0 otherwise

Problem (8) a robust shortest-path problem considering the worst-case scenario.

While a few robust shortest-path problems have already been solved (Kouvelis and Yu 1996,

Bertsimas and Sim 2003, Chaerani et al. 2005), we face a new class of robust shortest-path

problems with two uncertain multiplicative cost coefficients. In the already solved problems, the

cost coefficients are considered as a single uncertain-cost vector, such as in c̃Tx. On the other hand,

in problem (8), we have two uncertain-cost parameters, p̃ij and c̃ij , of different characteristics. Data

sources for two parameters are different, and the nature of uncertainty is also different; therefore, the

two uncertain parameters cannot be regarded as a single-cost parameter in a robust optimization

framework. Hence, we need a new method to solve the robust shortest-path problem in (8). It is

also unclear if these two parameters are correlated or not (Kwon et al. 2013).

In the next section, we extend the method of Kwon et al. (2013) to solve the worst-case CVaR

minimization problems.

5. Worst-case Conditional Value-at-Risk

The worst-case CVaR (WCVaR) minimization can be studied in extension of the robust shortest-path

problem (8). When data are uncertain, we define the following WCVaR measure:

WCVaRlα(Up,Vc) = max
p̃∈Up,c̃∈Vc

min
r∈R

Φl
α(r; p̃, c̃)

≈ max
p̃∈Up,c̃∈Vc

min
r∈R

{
r+

(
1−

∑
(i,j)∈Al

p̃ij

)
[0− r]+ +

1

1−α
∑

(i,j)∈Al

p̃ij[c̃ij − r]+
}

= max
p̃∈Up,c̃∈Vc

min
r∈R+

{
r+

1

1−α
∑

(i,j)∈Al

p̃ij[c̃ij − r]+
}

(10)

= min
r∈R+

max
p̃∈Up,c̃∈Vc

(
r+

1

1−α
∑

(i,j)∈Al

p̃ij[c̃ij − r]+
)

where p̃ and c̃ are the uncertain parameters, and U and V are compact and convex sets. The switch

of ‘min’ and ‘max’ in (10) is valid by Theorem 2 of Zhu and Fukushima (2009).
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5.1. Axiomatic Study of WCVaR

Since the WCVaR measure in (10) is the worst-case CVaR measure for an uncertain (or ambiguous)

probability distribution, the coherence of WCVaR in (10) can be shown directly by the following

proposition by Zhu and Fukushima (2009) and Proposition 1:

Proposition 3 (Zhu and Fukushima 2009). If ρ associated with crisp (or determinate) prob-

ability measure P is a coherent risk measure, then the corresponding ρw ≡ supP∈P ρ(X) associated

with ambiguous probability measure P remains a coherent risk measure.

In addition, it is natural that the WCVaR measure satisfies Axioms HA1 and HA3. However,

we need to redefine Axiom HA3 so that it is meaningful with data-uncertainty and WCVaR.

HA3’ (Attribute Monotonicity) For any vectors m≥ 0 and n≥ 0, WCVaRlα(Up,Vc)≤WCVaRlα(Up+

m,Vc +n) for all paths l ∈P and all α∈ (0,1), where

Up +m= {p+m : p∈ Up}

Vc +n= {c+n : c∈ Vc}

We can also consider the following alternative:

HA3” (Attribute Monotonicity) For any compact and convex sets Up, Vc, U ′p and V ′c,
WCVaRlα(Up,Vc)≤WCVaRlα(U ′p,V ′c) for all path l ∈P and all α∈ (0,1), where Up 4 U ′p and Vc 4 V ′c
meaning that

p≤ p′ ∀p∈ Up, p′ ∈ U ′p (or, sup Up ≤ inf U ′p)

c≤ c′ ∀c∈ Vc, c′ ∈ V ′c (or, sup Vc ≤ inf V ′c)

With these axioms, we present the following result:

Proposition 4. When U and V are compact and convex sets, the worst-case CVaR (WCVaR)

measure

WCVaRlα(Up,Vc) = min
r∈R+

max
p̃∈Up,c̃∈Vc

{
r+

1

1−α
∑

(i,j)∈Al

p̃ij[c̃ij − r]+
}

is a coherent risk measure and satisfies Axioms HA1 and HA3 (both HA3’ and HA3”).

The WCVaR minimization problem applied to hazmat transportation is as follows:

min
l∈P

WCVaRlα(Up,Vc) = min
l∈P

min
r∈R+

max
p̃∈Up,c̃∈Vc

(
r+

1

1−α
∑

(i,j)∈Al

p̃ij[c̃ij − r]+
)

(11)

= min
r∈R+

(
r+

1

1−α
min
x∈Ω

max
p̃∈Up,c̃∈Vc

∑
(i,j)∈A

p̃ij[c̃ij − r]+xij
)

(12)

where the set Ω is defined in (9). For each r, the WCVaR minimization problem requires us to solve

a robust shortest-path problem with two uncertain multiplicative cost coefficients. We will extend

the solution approach proposed by Kwon et al. (2013) for solving the sub robust shortest-path

problem.
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5.2. Box-Constrained Uncertainty Set

Let us consider the uncertain parameters p̃ and c̃ given in the following budgeted box-constrained

uncertainty set, as considered by Kwon et al. (2013).

p̃ij = pij + qijuij (13)

c̃ij = cij + dijvij (14)

where qij and dij are given constants,

uij ∈ U =

{
u : 0≤ uij ≤ 1 ∀(i, j),

∑
(i,j)∈A

uij ≤ Γu

}
(15)

vij ∈ V =

{
v : 0≤ vij ≤ 1 ∀(i, j),

∑
(i,j)∈A

vij ≤ Γv

}
(16)

and Γu and Γv are positive integers. An intuitive description of these parameter is given in Section

6.1. The parameters Γu and Γv are called the budgets of uncertainty, and represent the level of

ambiguity in the data. Increasing the values of Γu and Γv increases the level of robustness in the

objective (Bertsimas and Sim 2003). Replacing the uncertain parameters p̃ and c̃ in (11) with the

corresponding budgeted box-constrained set, we obtain:

min
r∈R+

(
r+

1

1−α
min
x∈Ω

max
u∈U,v∈V

∑
(i,j)∈A

(pij + qijuij)[(cij + dijvij)− r]+xij
)

(17)

We first observe that v at optimum is binary.

Lemma 1. There always exists a binary v that is a solution to the WCVaR minimization problem

(17). In particular, for any given r, x, and u, the maximization problem of v

max
v∈V

∑
(i,j)∈A

(pij + qijuij)[(cij + dijvij)− r]+xij (18)

has a binary solution.

Note that [(cij + dijvij)− r]+ takes values in the interval [[cij − r]+, [cij + dij − r]+]. Let us define

eij(r) = [cij − r]+ (19)

fij(r) = [cij + dij − r]+− [cij − r]+ (20)

A linearizing transformation from [(cij + dijvij)− r]+ to eij(r) + fij(r)vij changes the shape of the

objective function; the former is nonlinear and the latter is linear in vij. However, when they are
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maximized with respect to v over the set V , they have same binary solutions by Lemma 1. Therefore,

we can rewrite the inner min-max problem in (17) equivalently as follows:

min
x∈Ω

max
u∈U,v∈V

∑
(i,j)∈A

(pij + qijuij)[(cij + dijvij)− r]+xij

=min
x∈Ω

max
u∈U,v∈V

∑
(i,j)∈A

(pij + qijuij)(eij(r) + fij(r)vij)xij ≡RSP(r) (21)

We observe that the inner maximization problem in (21) is a non-convex disjoint bilinear program

for any given x and r, for which an optimal solution exists at an extreme point (Floudas and

Visweswaran 1994). Therefore we can obtain binary optimal solutions u and v. We obtain the

following result.

Proposition 5. There exists an optimal solution, r∗, to the WCVaR minimization problem (17)

in the following set:

r∗ ∈R≡ {0}∪ {cij : (i, j)∈A}∪{cij + dij : (i, j)∈A} (22)

Proposition 5 indicates that for each value of r in the set R, we need to solve a corresponding

robust shortest-path problem RSP(r) to obtain an optimal solution to the WCVaR minimization

problem.

For any fixed r, RSP(r) is an instance of the robust shortest path problems with two multiplicative

uncertain coefficients considered by Kwon et al. (2013). Each RSP(r) can be reformulated as a mixed

integer linear programming problem that can be solved by optimization solvers like CPLEX or can

be solved by a finite number of (deterministic) shortest path problems using methods proposed by

Kwon et al. (2013).

5.3. Computational Scheme for WCVaR Minimization

Proposition 5 enables us to write the WCVaR minimization problem (17) as follows:

WCVaR∗α = min
r∈R

RSP(r)

where R is defined in (22). In an actual implementation of the solution procedure for WCVaR, we

can reduce the number of r values to be considered. Since RSP(r) always has nonnegative value, it

is unnecessary to consider r values greater than the minimum value found so far; therefore it is

beneficial to examine the set R in ascending order. Optimality of the following scheme is guaranteed

by Proposition 5:

A Computational Scheme for the WCVaR minimization problem (17)

Step 0. Let R be an ascendingly ordered set of {0}∪ {cij : (i, j)∈A}∪{cij + dij : (i, j)∈A} and

rk denote k-th smallest element of R where r̂0 = 0. Set w]←∞ and k← 0.
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Step 1. If rk ≥w], terminate the algorithm.

Step 2. For rk, solve a robust shortest path problem RSP(rk) as defined in (21) using a method of

Kwon et al. (2013). Then compute

wk = rk +
1

1−α
RSP(rk)

If wk <w], set w]←wk.

Step 3. Update k← k+ 1 and repeat Steps 1 and 2, until k= 2|A|+ 1.

At termination, we find the WCVaR value as w], and the optimal path as the path obtained by

the corresponding robust shortest-path problem.

5.4. Properties of WCVaR Minimization

Depending on the value of α, the WCVaR model can be identical to the worse-case version of one

of classic models in Table 2; therefore, the WCVaR model is more general than other models.

Proposition 6. For sufficiently small α > 0, the WCVaR minimization is equivalent to the

worst-case Traditional Risk (TR) model. That is

min
l∈P

WCVaRlα = min
l∈P

max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

p̃ij c̃ij

Please note that in hazmat applications sufficiently small α as in Proposition 6 can be as large as

0.999933. We will observe this later with a case study (Table 3).

Proposition 7. For sufficiently large α< 1, the WCVaR minimization model is equivalent to

the worst-case Maximum Risk (MM) model. That is

min
l∈P

WCVaRlα = min
l∈P

max
c̃∈Vc

max
(i,j)∈Al

c̃ij = min
l∈P

max
(i,j)∈Al

(cij + dij)

While α represents the probability threshold for WCVaR, the above properties indicate that one

can examine various α values to generate alternative paths for hazmat routing. While a proper

choice of α can be tricky to practitioners, any “wrong” choice of α still provides a valid result based

on one of classic models; e.g., the worst-case TR (WTR) model when α was mistakenly chosen

small as 0.999933.

6. Numerical Experiments

Through numerical experiments in a realistic road network, we demonstrate the characteristics of

least-WCVaR paths and confirm the analytical findings.
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Figure 2 Alternative Representations of the Case Study Network

6.1. Test Network and Data Analysis

The proposed model was tested in a portion of an actual vehicular road network in Buffalo, New

York, USA, as shown in Figure 2. The Buffalo network consists of 90 nodes and 149 arcs, a unique

origin-destination pair (OD pair), and a single hazmat shipment that needs to be transported from

the origin to the destination. The population data were obtained from the U.S. Census Bureau (US

Census Bureau 2010).

For every arc we need to specify two attributes: accident probabilities (pij) and accident conse-

quences (cij). To obtain the nominal accident probabilities, we used the following formula:

pij = 3.16622× 10−7× (length of arc (i, j)) (23)

where 3.16622× 10−7 is the hazmat accident rate per mile/vehicle (Federal Motor Carrier Safety

Administration 2001). Hence, pij can be interpreted as the expected accident probability on arc

(i, j).

For the computation of the accident consequences cij, we considered the population density in

the hazmat impact zone. Specifically, we estimated the population density in a circle of radius λ,

which is equal to the hazmat spread radius as shown in Figure 3, that is commonly considered in

the literature (Erkut and Verter 1998, Erkut et al. 2007). The formula used for the computation of

the accident consequences was the following:

cij = π ·λ2 · ρij (24)
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i j
λ

Figure 3 Hazmat accident endangered area described by a circle of radius λ in arc (i, j); the shaded area is the

uncertainty band.

where ρij is the average population density along arc (i, j) and λ is assumed to be equal to 1 mile.

The value of λ was selected based on the recommendations of the Emergency Response Guidebook

(2012) for the length of the evacuation radius in the case of an accident involving hazmat, which

ranges between 0.5 and 1 mile depending on the type of the hazmat.

Although we used the population exposure in (24) as it has the top priority in practice (Federal

Motor Carrier Safety Administration 2007), cij can include any measure of accident consequences

such as effects on commerce, delays in transportation, and damages to the environment (Shaver

and Kaiser 1998). However measuring such factors requires multi-dimensional considerations of

population density, road type, type/quantity of hazmat, emergency response capability, terrain,

climatic conditions, etc. (Shaver and Kaiser 1998), and sufficient information may be unavailable to

decision makers. In such a case, WCVaR has an advantage over other routing methods in Table

2 that generate a single route. When the WCVaR model with the population exposure as cij

generates a route that is unacceptable for environmental reasons, the decision maker can adjust the

probability threshold α to generate alternate routes. Such flexibility is unavailable for many other

routing models. We will demonstrate this point through numerical examples later in this section.

We specified the values for the worst-case deviations of accident probability and accident conse-

quence: qij and dij, respectively. The following worst-case scenarios were assumed:

1. Accident probabilities can at most be doubled, i.e. qij = pij.

2. Hazmat spread radius can be as far as 1.5 miles. That is, an increase of 0.5 mile in the radius

λ of the endangered area as shown in the shaded area in Figure 3; therefore, dij = π · (1.5)2 ·ρij− cij .

Additionally, we set the values for Γu and Γv, which represent the ambiguity level of data or the

budget of uncertainty, as Γu = 8 and Γv = 5. We present a sensitivity study of these parameters in

Section 6.3.

All computations were performed in Matlab 2012a on a 2.8 GHz Intel Core 2 Duo computer

system with 8 GB memory.

6.2. Comparison of Models

With the above data on hand, the WCVaR model resulted in 14 optimal paths for confidence

levels in the interval [0,1). The model was tested for 101 different confidence level values and the
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Table 3 Optimal paths - WCVaR model using qij = pij , dij = π(1.5)2 · ρij − cij , Γu = 8 and Γv = 5

Confidence Level α Optimal WCVaR Route

[0,0.999933) 1,3,5,14,18,21,27,34,39,40,41,42,47,48,62,75,76,89,77,78,82,84
[0.999933,0.999944) 1,3,5,14,18,19,22,21,27,34,39,40,41,42,47,48,62,75,76,89,77,78,82,84
[0.999944,0.999955) 1,3,5,14,18,21,27,34,39,40,41,42,47,48,62,75,76,89,77,78,82,84
[0.999955,0.999965) 1,3,5,14,18,19,22,21,27,34,39,40,41,42,47,48,62,75,76,89,77,78,82,84
[0.999965,0.999968) 1,3,5,14,18,21,27,34,39,40,41,42,47,48,62,75,76,89,77,78,82,84
[0.999968,0.999972) 1,3,5,14,18,21,27,34,39,40,41,42,47,72,73,74,48,62,75,76,89,77,78,82,84
[0.999972,0.999973) 1,3,5,14,18,23,24,25,21,27,34,39,40,41,42,71,72,73,74,48,62,75,76,89,77,65,82,84
[0.999973,0.999977) 1,3,5,14,18,23,24,25,21,27,34,39,40,41,42,71,72,73,74,48,62,75,76,89,77,78,82,84
[0.999977,0.999986) 1,3,5,14,18,22,21,27,34,39,40,41,42,71,72,73,74,48,62,75,76,89,77,78,82,84
[0.999986,0.999990) 1,3,5,14,18,23,24,25,22,21,27,34,39,40,41,42,71,72,73,74,48,62,75,76,89,77,78,82,84
[0.999990,0.999992) 1,3,5,14,18,23,22,21,27,34,39,40,41,42,71,72,73,74,75,76,89,77,65,66,68,79,83,84
[0.999992,0.999993) 1,3,5,14,18,23,24,25,21,27,34,39,43,38,85,54,67,69,80,70,83,84
[0.999993,0.999997) 1,4,3,5,14,17,28,35,27,34,39,43,38,85,54,67,69,80,70,83,84

[0.999997,1) 1,3,5,14,18,21,27,34,39,43,38,85,54,67,69,80,70,83,84

maximum computational time for a single α-value was less than 21 seconds. The least-WCVaR

paths are presented in Table 3 and sample paths graphically in Figures 4 and 5.

An interesting observation from Table 3 is that the least-WCVaR path for α≥ 0.999997 that is

identical to the least- worst-case MM (WMM) path, as shown in Figure 4b, is passing through the

highly populated area of downtown Buffalo. This is a rather unexpected result, since for confidence

levels close to 1 the level of robustness is increasing; therefore, one would expect that the proposed

path would avoid high populated areas for high α-values. This behavior is due to the structure of the

Buffalo network. Note that, the path has its one side next to Niagara River. Hence, the area affected

by a potential accident along that path is cut in half, because we considered population exposure

only in our current computation of accident consequence. This result encourages us to consider

more flexible routing methods than simple methods like the MM or WMM models. Although the

downtown area faces the waterway beyond the environmental impact, it would still be unsafe to

transport hazmat through the downtown area. Therefore, a decision maker would need alternatives,

which the WCVaR (and CVaR) model can provide.

Figure 4 demonstrates the proposed paths from the WTR and WMM models for comparison

purposes. As stated in Proposition 6, WCVaR for small values of α is equivalent with the WTR

model. Figure 4a illustrates that the paths from the two models are indeed same. Similarly, the

WCVaR path for large values of confidence level—specifically for α≥ 0.999997—is equivalent to the

WMM path (proposing the same path, as shown in Figure 4b), verifying Proposition 7.

From the results presented in Figures 4 and 5, the flexibility of the WCVaR model is apparent.

When the WTR or WMM models are used, the decision makers have a unique path in hand with no

other alternatives to choose from, constraining their flexibility. On the contrary, using the WCVaR

model, the decision maker has the ability, by altering the confidence level value, to obtain different

paths covering various levels of risk-attitudes as demonstrated in Figure 5.
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Risk Measure =Worst−Case TR
Confidence Level α = NaN
Risk = 0.734858016285237

r = NaN

(a) WTR path, WCVaR

path for α= 0

Risk Measure =Worst−Case MM
Confidence Level α = NaN
Risk = 38696.5714375831

r = NaN

(b) WMM path, WCVaR

path for α= 0.999997
Figure 4 Optimal Paths from the Worst-case TR (WTR) and Worst-case MM (WMM) models and their relation-

ship with the WCVaR model for “small” α and “big” α respectively, using qij = pij , dij = π(1.5)2 ·ρij−cij ,

Γu = 8 and Γv = 5
Risk Measure =WCVaR

Confidence Level α = 0.999965
Risk = 19210.2369657825

r = 4055.70186800482

(a) α= 0.999965

Risk Measure =WCVaR
Confidence Level α = 0.999973

Risk = 22615.6985298394
r = 10434.4237931782

(b) α= 0.999973

Risk Measure =WCVaR
Confidence Level α = 0.99999

Risk = 34298.6306312076
r = 24499.8163377721

(c) α= 0.999990

Risk Measure =WCVaR
Confidence Level α = 0.999993

Risk = 36800.3404113408
r = 35203.5142839702

(d) α= 0.999993
Figure 5 Samples of Least-WCVaR Paths using qij = pij , dij = π(1.5)2ρij − cij , Γu = 8 and Γv = 5

Table 4 presents a more thorough comparison among VaR, CVaR and WCVaR models with

respect to various risk measure values and the length of paths. We also observe in Table 4 that,

at α= 0.999995, the VaR path produces relatively higher values in most risk measures, compared

to other α values. This result indicates that the VaR model may produce an undesirable path by

ignoring long tail. On the contrary, the behavior of the CVaR path at the same α value shows

smooth changes. We can also confirm this point by comparing the VaR and CVaR models in terms

of the CVaR risk measure. As shown in Figure 6a, the performance gap was as large as 17.6%.

We are also interested in how much value the WCVaR model would add over the VaR/CVaR

models. If the CVaR model would already produce good paths in terms of the WCVaR risk measure,

then it would weaken our motivation to consider the data uncertainty and tolerate computational

complexity of the WCVaR model. Based on the data presented in Table 4, we provided a chart in

Figure 6b. When the VaR and WCVaR paths are compared in terms of the WCVaR risk measure,

the WCVaR paths showed significant improvements up to 34.5%. When compared with the CVaR

paths, the WCVaR paths were better off by up to 17.4%. These observations signal that data

uncertainty should not be overlooked.
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Table 4 Comparison of VaR, CVaR and WCVaR models, when qij = pij , dij = π(1.5)2 · ρij − cij , Γu = 8 and

Γv = 5

Confidence Risk Measure Values of each given path Path Properties
Model Level

TR MM WTR WMM VaRα CVaRα WCVaRα
Number Distance

α of arcs (miles)

VaR

0 0.2126 18033 0.7803 40573 0 0.2126 0.7803 17 35.37
0.999970 0.2130 18033 0.7798 40573 1093 6899 23045 19 38.05
0.999975 0.2076 18033 0.7762 40573 2426 7633 26018 16 35.70
0.999980 0.2662 18845 0.8441 42400 3229 10445 33527 22 47.20
0.999985 0.2076 18033 0.7762 40573 4023 10498 35360 16 35.70
0.999990 0.2076 18033 0.7762 40573 4679 13518 39114 16 35.70
0.999995 0.3279 27663 0.9243 62241 10680 17755 50360 23 54.33
0.999999 0.2380 17198 0.8116 38696 17198 17198 38696 18 38.00

CVaR

0 0.2076 18033 0.7762 40573 0 0.2076 0.7762 16 35.70
0.999970 0.2076 18033 0.7762 40573 1722 6711 23015 16 35.70
0.999975 0.2081 18033 0.7757 40573 2426 7633 26018 18 38.38
0.999980 0.2113 18033 0.7803 40573 4023 8879 30398 17 35.80
0.999985 0.2739 18845 0.8190 42400 6213 9988 28835 25 54.20
0.999990 0.2683 18845 0.8094 42400 7575 11506 34299 25 54.00
0.999995 0.2536 18845 0.7979 42400 10889 15244 40425 22 47.10
0.999999 0.2380 17198 0.8116 38696 15646 16888 38696 18 38.00

WCVaR

0 0.2399 18845 0.7348 42400 0 0.2399 0.7348 21 46.70
0.999970 0.2718 18845 0.8021 42400 3122 7528 21339 24 53.80
0.999975 0.2831 18845 0.8242 42400 4056 8073 23590 27 60.20
0.999980 0.2683 18845 0.8094 42400 6102 9025 25888 25 54.00
0.999985 0.2683 18845 0.8094 42400 6213 9988 28835 25 54.00
0.999990 0.3112 18845 0.8952 42400 7575 12376 34299 27 51.70
0.999995 0.3375 17198 1.0215 38696 15157 16016 37439 20 42.98
0.999999 0.2466 17198 0.8202 38696 15646 16474 38696 18 38.00

Moreover, Table 4 provides us with information on the length of the paths proposed by each

model. When WCVaR paths are compared with VaR and CVaR paths at the respective confidence

levels, the WCVaR paths are usually longer especially at lower confidence levels. We may interpret

this observation as the robust nature of the WCVaR model induces more circuitous routes. When

the CVaR path is already risk-averse with larger α value, the consideration of data uncertainty

impacts less.

6.3. Sensitivity Analysis

Risk-averse routing in hazmat transportation usually results in a very circuitous path, because one

can usually avoid high accident consequences by detouring them. In this section, we discuss the

relationship between the length of the least-WCVaR paths and various model parameters that are

relevant to risk-averseness. In the WCVaR model, there are several parameters: α, qij, pij, dij, cij,

Γu and Γv. Note that pij and cij are obtained from the Buffalo network, therefore, the decision

maker has no control over them. On the other hand, we can control the level of robustness by

altering the values of α, qij, dij, Γu and Γv. Keeping this fact in mind, sensitivity analyses were

conducted keeping pij and cij fixed, and changing the values of α, qij, dij, Γu and Γv.
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(b) α= 0.999975, Γu = 5, Γv = 8
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(c) Average Path Length
Figure 7 Sensitivity Analyses for the WCVaR Model (q vs. d vs. Path Length)

Since transportation cost is an important factor for hazmat carriers, it is important to understand

how each parameter impacts the length of the resulting path. We tested the WCVaR model using

40 combinations of α, Γu and Γv and for each combination qij was in the interval [0,3pij] with

incremental step size 0.25pij, and dij was in the interval [0, π(3)2ρij − cij] with incremental size 0.1

miles for the hazmat spread radius. For each combination of the parameters’ values we measured

the length of the proposed path. In other words, we measure how circuitous the model becomes at

various levels of robustness. A sample of the results is presented in Figure 7.

First, we observe that qij and dij show no unilateral relationship with the path length. At certain

α, Γu and Γv settings, there could be a positive trend (Figure 7a for α= 0.999970,Γu = Γv = 1),

and at some other settings, there could be no trend (Figure 7b for α= 0.999975,Γu = 5,Γv = 8).

However, looking at the scale of the path-length-axis, we can observe that there are significant

jumps from Figure 7a to Figure 7b. Motivated by this observation, we generated Figure 7c to see if
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Figure 8 Sensitivity Analyses for the WCVaR Model (α vs. Γu = Γv vs. Path Length)

there exist a trend on the average path length for each pair of q and d. As shown by Figure 7c no

trend can be identified on the average path length.

Figure 8 demonstrates the relationship between the budgets of uncertainty Γu and Γv, the

confidence level α and the travel distance of the proposed path. These plots were obtained by

setting Γu equal to Γv in the interval [0,8] and varying α values from 0.999950 to 0.999999. The

vectors qij and dij were altered as described previously. As shown in Figures 8a and 8b, there exists

a positive trend between the uncertainty budgets and confidence level with the path length. That

is up to the point where the confidence level is approaching 1. At that point, due to the special

structure of our case-study network, the proposed path length is shorter than before. Figure 8c

presents the relation between Γu and Γv, the confidence level α and the average travel distance of

the proposed path for each combination. From the latter figure we can generalize our observation

that the path becomes more circuitous with larger Γu (= Γv) values. This is also true with larger α;

however, when α is very large and approaching 1, the least-WCVaR path becomes short. This is

because the Buffalo network has waterfronts and only one arc becomes critical when α is very large.

7. Conclusions

In this paper, we provided an axiomatic study of conditional value-at-risk (CVaR), a concept first

presented in Toumazis et al. (2013), and we formally introduced the concept of worst-case CVaR

(WCVaR) for determining safe transport routes for hazardous materials (hazmat). We emphasize

that the WCVaR model inherits the analytical and computational characteristics of the CVaR

model. WCVaR is a coherent risk measure for use as an appropriate hazmat routing criterion. In

addition, WCVaR offers a flexible, risk-averse, and computationally tractable routing method. While

CVaR and WCVaR both violate the path selection optimality principle of Erkut and Verter (1998),

we devised a tractable computational method to determine least-WCVaR paths. We confirmed our

analytical findings via numerical experiments in a realistic road network in Buffalo, New York.
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In general, the more risk-averse the hazmat carrier, the more circuitous will be the path chosen.

This is natural, since it is usually possible to avoid highly populated areas by detouring city

centers. Our experience mostly agrees with this consensus. However, in extreme cases, as when

the maximum risk model is used, or when CVaR/WCVaR models are used with a very large

confidence level, the consensus may fail to be true. In the Buffalo network that we considered in

this paper, those extreme risk models provided shorter routes that passed through the downtown

central business area. This was mainly because we did not consider the environmental consequences

of an accident and the Buffalo downtown area faces the Niagara River waterways, which reduces

by half the accident consequences in the area. However, driving through the downtown area still

would be an invalid choice for hazmat carriers. In fact, this observation makes the flexibility of the

CVaR/WCVaR models more attractive, since a decision maker can easily generate alternatives with

the CVaR/WCVaR models.

The scope of our current work is to address routing problems in a static network. However, a

consideration of the changes in population density throughout the day will improve the realism and

applicability of the model. We plan to develop a dynamic WCVaR model similar to that developed

for the CVaR model (Toumazis and Kwon 2013) as a future extension to this research. Such a

dynamic WCVaR model network would allow the incorporation of population migration throughout

the day and its effect on accident probabilities and consequences.

The main limitation of the CVaR/WCVaR models considered in this paper is that they address

the problem of routing a single hazmat shipment with a unique origin-destination (OD) pair.

Even though this problem can efficiently address local route planning problems for each shipment

individually, network regulators will be interested in minimizing overall risk exposure with multiple

shipments and multiple OD pairs. Addressing the hazmat routing problem from a network regulators

perspective using CVaR/WCVaR models is a potential future work.

Another possible consideration for the future is different types of uncertainty sets. While we

considered box-constrained uncertainty sets in this paper, consideration might be given, for example,

to ellipsoidal uncertainty sets. We know that the robust shortest-path problem itself becomes

NP-hard with such sets, therefore an approximate or heuristic method must be developed to solve

the corresponding WCVaR minimization problem. The challenge of the two uncertain multiplicative

cost coefficients should also be addressed.
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Appendix. Proofs of Propositions and Lemmas

Proof of Proposition 1: We provide a proof for each axiom of CA1, CA2’, and CA3.

(CA1) Letting r= s−m, we obtain the desired result.

(CA2’) Let

s∗ = arg min
s∈R+

[
s+

1

1−α
∑

(i,j)∈Al1

pij [cij − s]+
]

t∗ = arg min
t∈R+

[
t+

1

1−α
∑

(i,j)∈Al2

pij [cij − t]+
]

Then

min
r∈R+

[
r+

1

1−α

{ ∑
(i,j)∈Al1

pij [cij − r]+ +
∑

(i,j)∈Al2

pij [cij − r]+
}]

≤ s∗+ t∗+
1

1−α

{ ∑
(i,j)∈Al1

pij [cij − s∗− t∗]+ +
∑

(i,j)∈Al2

pij [cij − s∗− t∗]+
}

≤ s∗+ t∗+
1

1−α

{ ∑
(i,j)∈Al1

pij [cij − s∗]+ +
∑

(i,j)∈Al2

pij [cij − t∗]+
}

= min
s∈R+

[
s+

1

1−α
∑

(i,j)∈Al1

pij [cij − s]+
]

+ min
t∈R+

[
t+

1

1−α
∑

(i,j)∈Al2

pij [cij − t]+
]

(CA3) Letting λr= s, we can show that

min
s∈R+

[
s+

1

1−α
∑

(i,j)∈Al

pij [λcij − s]+
]

= λ min
r∈R+

[
r+

1

1−α
∑

(i,j)∈Al

pij [cij − r]+
]

for all λ≥ 0.

�

Proof of Proposition 2: We provide a proof for each axiom.

(HA1) We have

CVaRl2α = min
s∈R+

[
s+

1

1−α
∑

(i,j)∈Al2

pij [cij − s]+
]

= min
s∈R+

[
s+

1

1−α
∑

(i,j)∈Al1

pij [cij − s]+ +
1

1−α
∑

(i,j)∈Al2\Al1

pij [cij − s]+
]

≥ min
t∈R+

[
t+

1

1−α
∑

(i,j)∈Al1

pij [cij − t]+
]

+
1

1−α
min
r∈R+

[ ∑
(i,j)∈Al2\Al1

pij [cij − r]+
]

= min
t∈R+

[
t+

1

1−α
∑

(i,j)∈Al1

pij [cij − t]+
]

= CVaRl1α

where we set r an arbitrarily large number to make the corresponding minimum value zero.

(HA3) Let us introduce t∗ such that

CVaRlα(p, c) = min
t∈R+

[
t+

1

1−α
∑

(i,j)∈Al

pij [cij − t]+
]

= t∗+
1

1−α
∑

(i,j)∈Al

pij [cij − t∗]+
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and s∗ such that

CVaRlα(p+m,c+n) = min
s∈R+

[
s+

1

1−α
∑

(i,j)∈Al

(pij +mij)[cij +nij − s]+
]

= s∗+
1

1−α
∑

(i,j)∈Al

(pij +mij)[cij +nij − s∗]+

Then we obtain the following relations:

CVaRlα(p+m,c+n) = s∗+
1

1−α
∑

(i,j)∈Al

(pij +mij)[cij +nij − s∗]+

≥ s∗+
1

1−α
∑

(i,j)∈Al

pij [cij − s∗]+

≥ t∗+
1

1−α
∑

(i,j)∈Al

pij [cij − t∗]+

= CVaRlα(p, c)

�

Proof of Proposition 4: The coherence of WCVaR is assured by Proposition 3. We prove the rest.

(HA1) When path l2 contains path l1, we have

WCVaRl2α (Up,Vc) = min
r∈R+

max
p̃∈Up,c̃∈Vc

{
r+

1

1−α
∑

(i,j)∈Al2

p̃ij [c̃ij − r]+
}

= min
r∈R+

max
p̃∈Up,c̃∈Vc

{
r+

1

1−α
∑

(i,j)∈Al1

p̃ij [c̃ij − r]+ +
1

1−α
∑

(i,j)∈Al2\Al1

p̃ij [c̃ij − r]+
}

≤ min
s∈R+

max
p̃∈Up,c̃∈Vc

{
s+

1

1−α
∑

(i,j)∈Al1

p̃ij [c̃ij − s]+
}

+
1

1−α
min
t∈R+

max
p̃∈Up,c̃∈Vc

{ ∑
(i,j)∈Al2\Al1

p̃ij [c̃ij − t]+
}

= min
s∈R+

max
p̃∈Up,c̃∈Vc

{
s+

1

1−α
∑

(i,j)∈Al1

p̃ij [c̃ij − s]+
}

=WCVaRl1α (Up,Vc)

where we set t an arbitrarily large number.

(HA3) For both cases of (HA3’) and (HA3”), we can easily provide proofs that are similar to the CVaR

measure case in Proposition 2.

�

Proof of Lemma 1: It is well known that a convex function retains its maximum at an extreme point

if the feasible set is convex and compact (Pardalos and Rosen 1986). The objective function in (18) is a

convex function of v and the set V is a polytope. Therefore there exists a solution v at an extreme point of V ,

which is binary from the assumption that Γv is a positive integer, for any given r, x, and u. �



Toumazis and Kwon: WCVaR Minimization for Hazmat Transportation
24

Proof of Proposition 5: Let us consider any binary x′, u′, and v′, and the following problem:

min
r∈R+

(
r+

1

1−α
∑

(i,j)∈A

(pij + qiju
′
ij)[(cij + dijv

′
ij)− r]+x′ij

)
(25)

Let R be an ordered set of {0}∪ {cij : (i, j)∈A}∪{cij + dij : (i, j)∈A} and rk denote k-th smallest element

of R, where r̂0 = 0. Then the problem (25) is equivalent to the following problem:

min
k∈{0,1,...,|A|−1}

min
rk∈[rk,r̂k+1]

(
rk +

1

1−α
∑

(i,j)∈A1(rk)

(pij + qiju
′
ij)[(cij + dijv

′
ij)− rk]x′ij

)
(26)

where A1(rk) = {(i, j) : cij + dijv
′
ij > rk}. Note that we eliminated the ‘+’ operator in (26). For each k, the

inner problem of r in (26) is a linear optimization problem with a simple closed interval constraint. Therefore,

r∗k is either rk or r̂k+1. Since x∗, u∗, and v∗ to the WCVaR minimization problem (17) are all binary and the

choice of x′,u′, and v′ are arbitrary, we obtain the theorem. �

Proof of Proposition 6: For any path l, when α→ 0, we have:

WCVaRlα = min
r∈R+

r+
1

1−α
max

p̃∈Up,c̃∈Vc

∑
(i,j)∈A

p̃ij [c̃ij − r]+


= min
r∈R+

max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

(
1

|Al|
r+ p̃ij [c̃ij − r]+

)

Let us consider the two cases: when r > 0 and r= 0.

• Case 1: r > 0. In this case we have:

max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

(
1

|Al|
r+ p̃ij [c̃ij − r]+

)

≥ max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

(
1

|Al|
r+ p̃ij(c̃ij − r)

)

= max
p̃∈Up,c̃∈Vc

 ∑
(i,j)∈Al

p̃ij c̃ij + r

(
1−

∑
(i,j)∈Al

p̃ij

)
> max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

p̃ij c̃ij

because 1−
∑

(i,j)∈Al p̃ij > 0.

• Case 2: r= 0. In this case we have:

max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

(
1

|Al|
r+ p̃ij [c̃ij − r]+

)
= max
p̃∈Up,c̃∈Vc

∑
(i,j)∈Al

p̃ij c̃ij

Comparing the two cases, we can conclude that the optimal solution when α→ 0 can be obtained at r= 0,

and the WCVaR model is equivalent to the worst-case TR model. �
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Proof of Proposition 7: We consider

WCVaRlα = min
r∈R+

r+
1

1−α
max

p̃∈Up,c̃∈Vc

∑
(i,j)∈A

p̃ij [c̃ij − r]+


which can be seen as a weighted sum of r and maxp̃∈Up,c̃∈Vc
∑

(i,j)∈A p̃ij[c̃ij − r]+. When α→ 1, the weight

for the second term becomes very large and dominant. Therefore, to minimize the weighted sum, we can

determine the solution

r∗ = max
c̃∈Vc

max
(i,j)∈Al

c̃ij (27)

so that the second term vanishes. For any r greater than (27), the second term vanishes, but the choice of

(27) also minimizes the first term. Hence,

WCVaRlα = max
c̃∈Vc

max
(i,j)∈Al

c̃ij = max
(i,j)∈Al

(cij + dij)

for any l ∈P when α→ 1. �
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